Patents by Inventor Baosuo Zhou

Baosuo Zhou has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9305782
    Abstract: A method for patterning a layer increases the density of features formed over an initial patterning layer using a series of self-aligned spacers. A layer to be etched is provided, then an initial sacrificial patterning layer, for example formed using optical lithography, is formed over the layer to be etched. Depending on the embodiment, the patterning layer may be trimmed, then a series of spacer layers formed and etched. The number of spacer layers and their target dimensions depends on the desired increase in feature density. An in-process semiconductor device and electronic system is also described.
    Type: Grant
    Filed: October 6, 2014
    Date of Patent: April 5, 2016
    Assignee: Micron Technology, Inc.
    Inventors: Baosuo Zhou, Mirzafer K. Abatchev, Ardavan Niroomand, Paul A. Morgan, Shuang Meng, Joseph Neil Greely, Brian J. Coppa
  • Patent number: 9184159
    Abstract: A method for fabricating a semiconductor device comprises patterning a layer of photoresist material to form a plurality of mandrels. The method further comprises depositing an oxide material over the plurality of mandrels by an atomic layer deposition (ALD) process. The method further comprises anisotropically etching the oxide material from exposed horizontal surfaces. The method further comprises selectively etching photoresist material.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: November 10, 2015
    Assignee: MICRON TECHNOLOGY, INC.
    Inventors: Ardavan Niroomand, Baosuo Zhou, Ramakanth Alapati
  • Publication number: 20150287610
    Abstract: Various pattern transfer and etching steps can be used to create features. Conventional photolithography steps can be used in combination with pitch-reduction techniques to form superimposed, pitch-reduced patterns of crossing elongate features that can be consolidated into a single layer. Planarizing techniques using a filler layer and a protective layer are disclosed. Portions of an integrated circuit having different heights can be etched to a common plane.
    Type: Application
    Filed: April 13, 2015
    Publication date: October 8, 2015
    Inventors: MIRZAFER ABATCHEV, DAVID WELLS, BAOSUO ZHOU, KRUPAKAR MURALI SUBRAMANIAN
  • Publication number: 20150249016
    Abstract: A method of planarizing an upper surface of a semiconductor substrate in a plasma etch chamber comprises supporting the substrate on a support surface of a substrate support assembly that includes an array of independently controlled thermal control elements therein which are operable to control the spatial and temporal temperature of the support surface of the substrate support assembly to form independently controllable heater zones which are formed to correspond to a desired temperature profile across the upper surface of the semiconductor substrate. The etch rate across the upper surface of the semiconductor substrate during plasma etching depends on a localized temperature thereof wherein the desired temperature profile is determined such that the upper surface of the semiconductor substrate is planarized within a predetermined time. The substrate is plasma etched for the predetermined time thereby planarizing the upper surface of the substrate.
    Type: Application
    Filed: July 22, 2014
    Publication date: September 3, 2015
    Inventors: Monica Titus, Gowri Kamarthy, Harmeet Singh, Yoshie Kimura, Meihua Shen, Baosuo Zhou, Yifeng Zhou, John Hoang
  • Patent number: 9003651
    Abstract: Various pattern transfer and etching steps can be used to create features. Conventional photolithography steps can be used in combination with pitch-reduction techniques to form superimposed, pitch-reduced patterns of crossing elongate features that can be consolidated into a single layer. Planarizing techniques using a filler layer and a protective layer are disclosed. Portions of an integrated circuit having different heights can be etched to a common plane.
    Type: Grant
    Filed: July 5, 2013
    Date of Patent: April 14, 2015
    Assignee: Micron Technology, Inc.
    Inventors: Mirzafer Abatchev, David Wells, Baosuo Zhou, Krupakar Murali Subramanian
  • Patent number: 8980752
    Abstract: A method of forming a plurality of spaced features includes forming sacrificial hardmask material over underlying material. The sacrificial hardmask material has at least two layers of different composition. Portions of the sacrificial hardmask material are removed to form a mask over the underlying material. Individual features of the mask have at least two layers of different composition, with one of the layers of each of the individual features having a tensile intrinsic stress of at least 400.0 MPa. The individual features have a total tensile intrinsic stress greater than 0.0 MPa. The mask is used while etching into the underlying material to form a plurality of spaced features comprising the underlying material. Other implementations are disclosed.
    Type: Grant
    Filed: July 22, 2013
    Date of Patent: March 17, 2015
    Assignee: Micron Technology, Inc.
    Inventors: Farrell Good, Baosuo Zhou, Xiaolong Fang, Fatma Arzum Simsek-Ege
  • Publication number: 20150021744
    Abstract: A method for patterning a layer increases the density of features formed over an initial patterning layer using a series of self-aligned spacers. A layer to be etched is provided, then an initial sacrificial patterning layer, for example formed using optical lithography, is formed over the layer to be etched. Depending on the embodiment, the patterning layer may be trimmed, then a series of spacer layers formed and etched. The number of spacer layers and their target dimensions depends on the desired increase in feature density. An in-process semiconductor device and electronic system is also described.
    Type: Application
    Filed: October 6, 2014
    Publication date: January 22, 2015
    Inventors: Baosuo Zhou, Mirzafer K. Abatchev, Ardavan Niroomand, Paul A. Morgan, Shuang Meng, Joseph Neil Greely, Brian J. Coppa
  • Patent number: 8871648
    Abstract: In one or more embodiments, a method is provided for forming an integrated circuit with a pattern of isolated features having a final density of isolated features that is greater than a starting density of isolated features in an integrated circuit by a multiple of two or more. The method can include forming a pattern of pillars having a density X, and forming a pattern of holes amongst the pillars, the holes having a density at least X. The pillars can be selectively removed to form a pattern of holes having a density at least 2X. In some embodiments, plugs can be formed in the pattern of holes, such as by epitaxial deposition on the substrate, in order to provide a pattern of pillars having a density 2X. In other embodiments, the pattern of holes can be transferred to the substrate by etching.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: October 28, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Baosuo Zhou, Gurtej S. Sandhu, Ardavan Niroomand
  • Patent number: 8852851
    Abstract: A method for patterning a layer increases the density of features formed over an initial patterning layer using a series of self-aligned spacers. A layer to be etched is provided, then an initial sacrificial patterning layer, for example formed using optical lithography, is formed over the layer to be etched. Depending on the embodiment, the patterning layer may be trimmed, then a series of spacer layers formed and etched. The number of spacer layers and their target dimensions depends on the desired increase in feature density. An in-process semiconductor device and electronic system is also described.
    Type: Grant
    Filed: July 10, 2006
    Date of Patent: October 7, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Baosuo Zhou, Mirzafer K. Abatchev, Ardavan Niroomand, Paul A. Morgan, Shuang Meng, Joseph N. Greeley, Brian J. Coppa
  • Patent number: 8836083
    Abstract: A method of forming features on a target layer. The features have a critical dimension that is triple- or quadruple-reduced compared to the critical dimension of portions of a resist layer used as a mask. An intermediate layer is deposited over a target layer and the resist layer is formed over the intermediate layer. After patterning the resist layer, first spacers are formed on sidewalls of remaining portions of the resist layer, masking portions of the intermediate layer. Second spacers are formed on sidewalls of the portions of the intermediate layer. After removing the portions of the intermediate layer, the second spacers are used as a mask to form the features on the target layer. Integrated circuit devices are also disclosed.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: September 16, 2014
    Assignee: Micron Technology, Inc.
    Inventor: Baosuo Zhou
  • Publication number: 20130309858
    Abstract: A method of forming a plurality of spaced features includes forming sacrificial hardmask material over underlying material. The sacrificial hardmask material has at least two layers of different composition. Portions of the sacrificial hardmask material are removed to form a mask over the underlying material. Individual features of the mask have at least two layers of different composition, with one of the layers of each of the individual features having a tensile intrinsic stress of at least 400.0 MPa. The individual features have a total tensile intrinsic stress greater than 0.0 MPa. The mask is used while etching into the underlying material to form a plurality of spaced features comprising the underlying material. Other implementations are disclosed.
    Type: Application
    Filed: July 22, 2013
    Publication date: November 21, 2013
    Applicant: Micron Technology, Inc.
    Inventors: Farrell Good, Baosuo Zhou, Xiaolong Fang, Fatma Arzum Simsek-Ege
  • Publication number: 20130295770
    Abstract: Various pattern transfer and etching steps can be used to create features. Conventional photolithography steps can be used in combination with pitch-reduction techniques to form superimposed, pitch-reduced patterns of crossing elongate features that can be consolidated into a single layer. Planarizing techniques using a filler layer and a protective layer are disclosed. Portions of an integrated circuit having different heights can be etched to a common plane.
    Type: Application
    Filed: July 5, 2013
    Publication date: November 7, 2013
    Inventors: Mirzafer Abatchev, David Wells, Baosuo ` Zhou, Krupakar Murali Subramanian
  • Patent number: 8530352
    Abstract: Some embodiments include methods of forming openings. For instance, a construction may have a material over a plurality of electrically conductive lines. A plurality of annular features may be formed over the material, with the annular features crossing the lines. A patterned mask may be formed over the annular features, with the patterned mask leaving segments of the annular features exposed through a window in the patterned mask. The exposed segments of the annular features may define a plurality of openings, and such openings may be transferred into the material to form openings extending to the electrically conductive lines.
    Type: Grant
    Filed: February 18, 2013
    Date of Patent: September 10, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Vishal Sipani, Baosuo Zhou, Ming-Chuan Yang
  • Patent number: 8492278
    Abstract: A method of forming a plurality of spaced features includes forming sacrificial hardmask material over underlying material. The sacrificial hardmask material has at least two layers of different composition. Portions of the sacrificial hardmask material are removed to form a mask over the underlying material. Individual features of the mask have at least two layers of different composition, with one of the layers of each of the individual features having a tensile intrinsic stress of at least 400.0 MPa. The individual features have a total tensile intrinsic stress greater than 0.0 MPa. The mask is used while etching into the underlying material to form a plurality of spaced features comprising the underlying material. Other implementations are disclosed.
    Type: Grant
    Filed: March 30, 2010
    Date of Patent: July 23, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Farrell Good, Baosuo Zhou, Xiaolong Fang, Fatma Arzum Simsek-Ege
  • Patent number: 8479384
    Abstract: Various pattern transfer and etching steps can be used to create features. Conventional photolithography steps can be used in combination with pitch-reduction techniques to form superimposed, pitch-reduced patterns of crossing elongate features that can be consolidated into a single layer. Planarizing techniques using a filler layer and a protective layer are disclosed. Portions of an integrated circuit having different heights can be etched to a common plane.
    Type: Grant
    Filed: August 11, 2011
    Date of Patent: July 9, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Mirzafer Abatchev, David Wells, Baosuo Zhou, Krupakar M. Subramanian
  • Patent number: 8389407
    Abstract: Some embodiments include methods of forming openings. For instance, a construction may have a material over a plurality of electrically conductive lines. A plurality of annular features may be formed over the material, with the annular features crossing the lines. A patterned mask may be formed over the annular features, with the patterned mask leaving segments of the annular features exposed through a window in the patterned mask. The exposed segments of the annular features may define a plurality of openings, and such openings may be transferred into the material to form openings extending to the electrically conductive lines.
    Type: Grant
    Filed: June 7, 2012
    Date of Patent: March 5, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Vishal Sipani, Baosuo Zhou, Ming-Chuan Yang
  • Publication number: 20130009283
    Abstract: A method of forming features on a target layer. The features have a critical dimension that is triple- or quadruple-reduced compared to the critical dimension of portions of a resist layer used as a mask. An intermediate layer is deposited over a target layer and the resist layer is formed over the intermediate layer. After patterning the resist layer, first spacers are formed on sidewalls of remaining portions of the resist layer, masking portions of the intermediate layer. Second spacers are formed on sidewalls of the portions of the intermediate layer. After removing the portions of the intermediate layer, the second spacers are used as a mask to form the features on the target layer. Integrated circuit devices are also disclosed.
    Type: Application
    Filed: September 14, 2012
    Publication date: January 10, 2013
    Applicant: MICRON TECHNOLOGY, INC.
    Inventor: Baosuo Zhou
  • Patent number: 8338304
    Abstract: A method of forming features on a target layer. The features have a critical dimension that is triple- or quadruple-reduced compared to the critical dimension of portions of a resist layer used as a mask. An intermediate layer is deposited over a target layer and the resist layer is formed over the intermediate layer. After patterning the resist layer, first spacers are formed on sidewalls of remaining portions of the resist layer, masking portions of the intermediate layer. Second spacers are formed on sidewalls of the portions of the intermediate layer. After removing the portions of the intermediate layer, the second spacers are used as a mask to foil the features on the target layer. A partially fabricated integrated circuit device is also disclosed.
    Type: Grant
    Filed: September 22, 2010
    Date of Patent: December 25, 2012
    Assignee: Micron Technology, Inc.
    Inventor: Baosuo Zhou
  • Patent number: 8338959
    Abstract: A method for fabricating a semiconductor device comprises patterning a layer of photoresist material to form a plurality of mandrels. The method further comprises depositing an oxide material over the plurality of mandrels by an atomic layer deposition (ALD) process. The method further comprises anisotropically etching the oxide material from exposed horizontal surfaces. The method further comprises selectively etching photoresist material.
    Type: Grant
    Filed: September 12, 2011
    Date of Patent: December 25, 2012
    Assignee: Micron Technology, Inc.
    Inventors: Ardavan Niroomand, Baosuo Zhou, Ramakanth Alapati
  • Patent number: 8324107
    Abstract: Methods are disclosed, such as those involving increasing the density of isolated features in an integrated circuit. In one or more embodiments, a method is provided for forming an integrated circuit with a pattern of isolated features having a final density of isolated features that is greater than a starting density of isolated features in the integrated circuit by a multiple of two or more. The method can include forming a pattern of pillars having a density X, and forming a pattern of holes amongst the pillars, the holes having a density at least X. The pillars can be selectively removed to form a pattern of holes having a density at least 2X. In some embodiments, plugs can be formed in the pattern of holes, such as by epitaxial deposition on the substrate, in order to provide a pattern of pillars having a density 2X. In other embodiments, the pattern of holes can be transferred to the substrate by etching.
    Type: Grant
    Filed: January 13, 2010
    Date of Patent: December 4, 2012
    Assignee: Micron Technology, Inc.
    Inventors: Baosuo Zhou, Gurtej S. Sandhu, Ardavan Niroomand