Patents by Inventor Baozhen Li

Baozhen Li has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200219811
    Abstract: An antifuse structure having enhanced programming efficiency is provided in which there is limited contact between the antifuse material and top and bottom electrodes. The antifuse material has a circular ring shape (i.e., donate shape having a hole in the middle (center) thereof) in which a dielectric material structure composed of a dielectric material having a dielectric constant of great than 4.0 is contained in the hole of the circular ring shaped antifuse material. The antifuse material is composed of a dielectric material having a lower dielectric breakdown strength as compared to the dielectric material structure.
    Type: Application
    Filed: January 3, 2019
    Publication date: July 9, 2020
    Inventors: Chih-Chao Yang, Baozhen Li
  • Patent number: 10699950
    Abstract: A method of tailoring BEOL RC parametrics to improve chip performance. According to the method, an integrated circuit design on an integrated circuit chip is analyzed. The analysis comprises calculating Vmax for vias and metal lines in the integrated circuit design over a range of sizes for the vias and the metal lines. Predicted use voltage for applications on the integrated circuit chip is determined. The size or the location of at least one of the vias and the metal lines is tailored based on performance parameters of the integrated circuit chip.
    Type: Grant
    Filed: February 6, 2018
    Date of Patent: June 30, 2020
    Assignee: ELPIS TECHNOLOGIES INC.
    Inventors: Lawrence A. Clevenger, Baozhen Li, Kirk D. Peterson, John E. Sheets, II, Terry A. Spooner
  • Publication number: 20200194371
    Abstract: A method of increasing the surface area of a contact to an electrical device that in one embodiment includes forming a contact stud extending through an intralevel dielectric layer to a component of the electrical device, and selectively forming a contact region on the contact stud. The selectively formed contact region has an exterior surface defined by a curvature and has a surface area that is greater than a surface area of the contact stud. An interlevel dielectric layer is formed on the intralevel dielectric layer, wherein an interlevel contact extends through the interlevel dielectric layer into direct contact with the selectively formed contact region.
    Type: Application
    Filed: February 25, 2020
    Publication date: June 18, 2020
    Inventors: Lawrence A. Clevenger, Baozhen Li, Kirk D. Peterson, Terry A. Spooner, Junli Wang
  • Patent number: 10651083
    Abstract: A graded cap is formed upon an interconnect, such as a back end of line wire. The graded cap includes a microstructure that uniformly changes from a metal nearest the interconnect to a metal nitride most distal from the interconnect. The graded cap is formed by nitriding a metal cap that is formed upon the interconnect. During nitriding an exposed one or more perimeter portions of the metal cap become a metal nitride with a larger amount or concentration of Nitrogen while one or more inner portions of the metal cap nearest the interconnect may be maintained as the metal or become the metal nitride with a fewer amount or concentration of Nitrogen. The resulting graded cap includes a gradually or uniformly changing microstructure between the one or more inner portions and the one or more perimeter portions.
    Type: Grant
    Filed: March 5, 2018
    Date of Patent: May 12, 2020
    Assignee: International Business Machines Corporation
    Inventors: Andrew Tae Kim, Baozhen Li, Ernest Y. Wu, Chih-Chao Yang
  • Patent number: 10636738
    Abstract: A method of increasing the surface area of a contact to an electrical device that in one embodiment includes forming a contact stud extending through an intralevel dielectric layer to a component of the electrical device, and selectively forming a contact region on the contact stud. The selectively formed contact region has an exterior surface defined by a curvature and has a surface area that is greater than a surface area of the contact stud. An interlevel dielectric layer is formed on the intralevel dielectric layer, wherein an interlevel contact extends through the interlevel dielectric layer into direct contact with the selectively formed contact region.
    Type: Grant
    Filed: May 14, 2018
    Date of Patent: April 28, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Lawrence A. Clevenger, Baozhen Li, Kirk D. Peterson, Terry A. Spooner, Junli Wang
  • Publication number: 20200126911
    Abstract: A mandrel structure is provided over a dielectric using a patterning process. The mandrel structure includes a first mandrel, a second mandrel and a third mandrel in a parallel arrangement. The second mandrel is located between the first and third mandrels and has a cut larger than a minimum ground rule feature. A sidewall layer is formed over the mandrel structure. The sidewall layer has two long parallel gaps for two contact lines and a third gap for a fuse element. The third gap is orthogonal to and connects the two long parallel gaps. The mandrel structure is removed. The sidewall pattern is used to etch the dielectric to form a trench structure comprising two parallel contact line trenches having a width at least as great as a ground rule of the patterning process for the contact lines and a connecting, orthogonal fuse element trench having a width less than the ground rule for the fuse element. The trenches are filled with conductive material to form the contact lines and a fuse element.
    Type: Application
    Filed: October 22, 2018
    Publication date: April 23, 2020
    Inventors: Baozhen Li, Chih-Chao Yang, Andrew Tae Kim, Ernest Y Wu
  • Publication number: 20200118943
    Abstract: An integrated circuit (IC) structure includes an active area of the IC structure insulator positioned over a substrate. The active area includes an interconnection structure comprised of a first plurality of levels. Each of the interconnect structure levels including an interlayer dielectric (ILD) layer, a barrier layer disposed over the ILD and a conductor metal layer over the barrier layer. The structure also includes a crack stop area which includes a crack stop structure having a second plurality of levels. The interconnect and crack stop structures have an equal number of levels. A third plurality of the crack stop structure levels include a high modulus layer unique to the respective crack stop structure level as compared to the corresponding interconnect structure level.
    Type: Application
    Filed: October 17, 2019
    Publication date: April 16, 2020
    Inventors: Chih-Chao Yang, Baozhen Li, Xiao Hu Liu, Gríselda Bonilla
  • Publication number: 20200111741
    Abstract: A vertical electrical fuse (eFuse) is provided that can be blown utilizing a relatively small current. The vertical eFuse is embedded in various dielectric material layers and includes a fuse link that is located between, and vertically connected to, first and second electrically conductive structures, the fuse link having a gouging feature at the bottom thereof.
    Type: Application
    Filed: October 9, 2018
    Publication date: April 9, 2020
    Inventors: Chih-Chao Yang, Baozhen Li, Andrew Tae Kim
  • Patent number: 10615112
    Abstract: A method and structure to isolate BEOL MIM capacitors shorted or rendered highly leaky due to in process, or service induced defects, in a semiconductor chip are provided such that the rejection and loss of yield of otherwise good chips is minimized. In one embodiment, the method incorporates an isolation element such as, for example, a fuse, or a phase change material such as, a metal/insulation transition metal material, in series between the MIM capacitor and the active circuit. When a high current passes through the element due to the MIM capacitor being defective, the isolation element is rendered highly resistive or electrically open thereby disconnecting the defective capacitor or electrode plate from the active circuitry.
    Type: Grant
    Filed: May 3, 2018
    Date of Patent: April 7, 2020
    Assignee: International Business Machines Corporation
    Inventors: Baozhen Li, Chih-Chao Yang, Andrew Tae Kim
  • Publication number: 20200105590
    Abstract: A via and a method of fabricating a via in an integrated circuit involve forming a trench in dielectric material deposited above a first cap of a first metal level. The method includes patterning a collar from insulator material directly above the first cap, and etching through the first cap, within an area surrounded by the collar, to a first metal layer of the first metal level directly below the first cap. A liner is conformally deposited. The liner lines sidewalls of the collar. A metal conductor is deposited to form the via and a second metal layer of a second metal level.
    Type: Application
    Filed: September 28, 2018
    Publication date: April 2, 2020
    Inventors: Baozhen Li, Chih-Chao Yang, Andrew Tae Kim
  • Publication number: 20200051930
    Abstract: A method for constructing an advanced crack stop structure is described. An interconnection structure is formed comprised of a plurality of levels. Each level has an interconnect structure section and a crack stop section. In a first level of the interconnection structure, a high modulus layer is formed in the crack stop recess but not the interconnect recess and a barrier layer and a conductive metal layer is formed in both the interconnection recess and the crack stop recess of the first level. In a second level of the interconnection structure and the crack stop structure, a second high modulus layer is formed in the crack stop recess but not the interconnect recess and a barrier layer and a conductive metal layer is formed in both the interconnection recess and the crack stop recess of the second level. The barrier layers and high modulus layers are deposited in different steps.
    Type: Application
    Filed: October 17, 2019
    Publication date: February 13, 2020
    Inventors: Chih-Chao Yang, Baozhen Li, Xiao Hu Liu, Griselda Bonilla
  • Publication number: 20200035621
    Abstract: A method for creating an integrated circuit (IC) structure includes an active area of the IC structure insulator positioned over a substrate. The active area includes an interconnection structure comprised of a plurality of levels, each of the interconnect structure levels including an interlayer dielectric (ILD) layer, a barrier layer disposed over the ILD and a conductor metal layer over the barrier layer. The IC structure also includes a crack stop area which includes a crack stop structure having an equal plurality of levels as the interconnect structure. Each of the crack stop structure levels includes at least one of the layers of the interconnection structure at a same level. At least one crack stop structure level also includes a high modulus layer unique to the crack stop structure level as compared to the corresponding interconnect structure level. In another aspect of the invention, a method for producing the structure is described.
    Type: Application
    Filed: October 7, 2019
    Publication date: January 30, 2020
    Inventors: Chih-Chao Yang, Baozhen Li, Xiao Hu Liu, Griselda Bonilla
  • Publication number: 20200035620
    Abstract: An integrated circuit (IC) structure includes an active area of the IC structure insulator positioned over a substrate. The active area includes an interconnection structure comprised of a plurality of levels, each of the interconnect structure levels including an interlayer dielectric (ILD) layer, a barrier layer disposed over the ILD and a conductor metal layer over the barrier layer. The IC structure also includes a crack stop area which includes a crack stop structure having an equal plurality of levels as the interconnect structure. Each of the crack stop structure levels includes at least one of the layers of the interconnection structure at a same level. At least one crack stop structure level also includes a high modulus layer unique to the crack stop structure level as compared to the corresponding interconnect structure level.
    Type: Application
    Filed: October 7, 2019
    Publication date: January 30, 2020
    Inventors: Chih-Chao Yang, Baozhen Li, Xiao Hu Liu, Griselda Bonilla
  • Publication number: 20200027829
    Abstract: An interconnect structure is provided that includes a liner located between an electrically conductive structure and an interconnect dielectric material layer. The liner is composed of a phase change material that is insulating at a first temperature, and becomes conductive at a second temperature that is higher than the first temperature. The liner that is composed of such a phase change material is referred to as an “insulator-to/from metal transition (IMT)” liner. In the present application, an entirety of, or a portion of, the IMT liner may be changed from an insulating phase to a conductive phase by increasing the temperature (i.e., heating) of the liner so as to provide a redundancy path in which electrons can flow.
    Type: Application
    Filed: September 27, 2019
    Publication date: January 23, 2020
    Inventors: Joseph F. Maniscalco, Andrew Tae Kim, Baozhen Li, Chih-Chao Yang
  • Patent number: 10539611
    Abstract: Disclosed is a method for performing reliability qualification of manufactured integrated circuit (IC) chips. In the method, IC chips are manufactured according to a design and sorted into groups, which correspond to different process windows within a process distribution for the design. Group fail rates are determined for the groups. Reliability qualification of the manufactured IC chips is performed. Specifically, a sample of the IC chips is stress tested and the manufactured IC chips are qualified if the actual fail rate of the sample is no greater than an expected fail rate. The expected fail rate used is not, however, the expected overall fail rate for all the manufactured IC chips. Instead it is a unique expected fail rate for the specific sample itself and it is determined considering fail rate contributions from only those specific groups of IC chips from which the IC chips in the sample were selected.
    Type: Grant
    Filed: November 3, 2017
    Date of Patent: January 21, 2020
    Assignee: International Business Machines Corporation
    Inventors: Jeanne P. Bickford, Nazmul Habib, Baozhen Li, Tad J. Wilder
  • Patent number: 10534888
    Abstract: A computer implemented method, a system and a computer readable storage medium configured to conduct the following: determining a reliability parameter of an initial hybrid metallization to determine a determined reliability parameter, comparing the determined reliability parameter to a reliability limit and determining a reliability ratio, determining a performance parameter of the initial hybrid metallization to determine a determined performance parameter, comparing the determined performance parameter to a performance limit and determining a performance ratio, determining a reliability indice from the reliability ratio, determining a performance indice from the performance ratio, determining a reliability score from a combination of the determined reliability parameter and the reliability indice, determining a performance score from a combination of the determined performance parameter and the performance indice, comparing the reliability score to the performance score, selecting a first interconnect and
    Type: Grant
    Filed: January 3, 2018
    Date of Patent: January 14, 2020
    Assignee: International Business Machines Corporation
    Inventors: Baozhen Li, Chih-Chao Yang, Theo Standaert
  • Publication number: 20200013671
    Abstract: A semiconductor structure and a process for forming a semiconductor structure. There is a back end of the line wiring layer which includes a wiring line, a multilayer cap layer and an ILD layer. A metal-filled via extends through the ILD layer and partially through the cap layer to make contact with the wiring line. There is a reliability enhancement material formed in one of the layers of the cap layer. The reliability enhancement material surrounds the metal-filled via only in the cap layer to make a bottom of the metal-filled via that contacts the wiring line be under compressive stress, wherein the compressive reliability enhancement material has different physical properties than the cap layer.
    Type: Application
    Filed: September 18, 2019
    Publication date: January 9, 2020
    Inventors: Lawrence A. Clevenger, Baozhen Li, Xiao H. Liu, Kirk D. Peterson
  • Publication number: 20200013868
    Abstract: According to an embodiment of the present invention, a method for forming contacts includes forming an oxide layer over and along a first liner layer. A first spacer layer is formed along the first liner layer opposing the oxide layer. A work function metal layer is formed along the first spacer layer opposing the first liner layer. A gate is formed on and along the work function metal opposing the first spacer. A second spacer layer is formed on the oxide layer. Portions of the oxide layer, the first liner layer, the first spacer, the work function metal layer and the second spacer layer are removed which forms a recess between the gate and the first spacer layer. A second liner layer is deposited in the recess. A low-resistance metal is deposited in the removed portions to form the first contact.
    Type: Application
    Filed: August 21, 2019
    Publication date: January 9, 2020
    Inventors: LAWRENCE A. CLEVENGER, JUNLI WANG, KIRK D. PETERSON, BAOZHEN LI, TERRY A. SPOONER, JOHN E. SHEETS, II
  • Publication number: 20190371663
    Abstract: A semiconductor device and method of making the same, wherein in accordance with an embodiment of the present invention, the device includes a first conductive line including a first conductive material, and a second conductive line including a second conductive material. A via connects the first conductive line to the second conductive line, wherein the via includes conductive via material, wherein the via material top surface is coated with a liner material, wherein the via is a bottomless via.
    Type: Application
    Filed: August 15, 2019
    Publication date: December 5, 2019
    Inventors: Lawrence A. Clevenger, Baozhen Li, Kirk D. Peterson, Terry A. Spooner, Junli Wang
  • Publication number: 20190363013
    Abstract: A semiconductor device includes a first dielectric layer including a first contact hole, a second dielectric layer formed on the first dielectric layer, and including a second contact hole aligned with the first contact hole, and a reflowed copper layer formed in the first and second contact holes.
    Type: Application
    Filed: February 28, 2019
    Publication date: November 28, 2019
    Inventors: Lawrence A. CLEVENGER, Baozhen LI, Kirk David PETERSON, John E. SHEETS, II, Junli WANG, Chih-Chao YANG