Patents by Inventor Benjamin Chu-Kung

Benjamin Chu-Kung has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8809836
    Abstract: Techniques are disclosed for providing a low resistance self-aligned contacts to devices formed in a semiconductor heterostructure. The techniques can be used, for example, for forming contacts to the gate, source and drain regions of a quantum well transistor fabricated in III-V and SiGe/Ge material systems. Unlike conventional contact process flows which result in a relatively large space between the source/drain contacts to gate, the resulting source and drain contacts provided by the techniques described herein are self-aligned, in that each contact is aligned to the gate electrode and isolated therefrom via spacer material.
    Type: Grant
    Filed: February 4, 2013
    Date of Patent: August 19, 2014
    Assignee: Intel Corporation
    Inventors: Ravi Pillarisetty, Benjamin Chu-Kung, Mantu K. Hudait, Marko Radosavljevic, Jack T. Kavalieros, Willy Rachmady, Niloy Mukherjee, Robert S. Chau
  • Publication number: 20140209865
    Abstract: Embodiments of the present disclosure provide contact techniques and configurations for reducing parasitic resistance in nanowire transistors. In one embodiment, an apparatus includes a semiconductor substrate, an isolation layer formed on the semiconductor substrate, a channel layer including nanowire material formed on the isolation layer to provide a channel for a transistor, and a contact coupled with the channel layer, the contact being configured to surround, in at least one planar dimension, nanowire material of the channel layer and to provide a source terminal or drain terminal for the transistor.
    Type: Application
    Filed: December 28, 2011
    Publication date: July 31, 2014
    Inventors: Ravi Pillarisetty, Benjamin Chu-Kung, Willy Rachmady, Van H. Le, Gilbert Dewey, Niloy Mukherjee, Matthew V. Metz, Han Wui Then, Marko Radosavljevic
  • Publication number: 20140203327
    Abstract: Deep gate-all-around semiconductor devices having germanium or group III-V active layers are described. For example, a non-planar semiconductor device includes a hetero-structure disposed above a substrate. The hetero-structure includes a hetero-junction between an upper layer and a lower layer of differing composition. An active layer is disposed above the hetero-structure and has a composition different from the upper and lower layers of the hetero-structure. A gate electrode stack is disposed on and completely surrounds a channel region of the active layer, and is disposed in a trench in the upper layer and at least partially in the lower layer of the hetero-structure. Source and drain regions are disposed in the active layer and in the upper layer, but not in the lower layer, on either side of the gate electrode stack.
    Type: Application
    Filed: January 24, 2013
    Publication date: July 24, 2014
    Inventors: Ravi Pillarisetty, Willy Rachmady, Van H. Le, Seung Hoon Sung, Jessica S. Kachian, Jack T. Kavalieros, Han Wui Then, Gilbert Dewey, Marko Radosavljevic, Benjamin Chu-Kung, Niloy Mukherjee
  • Publication number: 20140203326
    Abstract: Methods of forming hetero-layers with reduced surface roughness and bulk defect density on non-native surfaces and the devices formed thereby are described. In one embodiment, the method includes providing a substrate having a top surface with a lattice constant and depositing a first layer on the top surface of the substrate. The first layer has a top surface with a lattice constant that is different from the first lattice constant of the top surface of the substrate. The first layer is annealed and polished to form a polished surface. A second layer is then deposited above the polished surface.
    Type: Application
    Filed: December 28, 2011
    Publication date: July 24, 2014
    Inventors: Niloy Mukherjee, Matthew V. Metz, james m. Powers, Van H. Le, Benjamin Chu-Kung, Mark R. Lemay, Marko Radosavljevic, Niti Goel
  • Patent number: 8785907
    Abstract: An embodiment includes depositing a material onto a substrate where the material includes a different lattice constant than the substrate (e.g., III-V or IV epitaxial (EPI) material on a Si substrate). An embodiment includes an EPI layer formed within a trench having walls that narrow as the trench extends upwards. An embodiment includes an EPI layer formed within a trench using multiple growth temperatures. A defect barrier, formed in the EPI layer when the temperature changes, contains defects within the trench and below the defect barrier. The EPI layer above the defect barrier and within the trench is relatively defect free. An embodiment includes an EPI layer annealed within a trench to induce defect annihilation. An embodiment includes an EPI superlattice formed within a trench and covered with a relatively defect free EPI layer (that is still included in the trench). Other embodiments are described herein.
    Type: Grant
    Filed: December 20, 2012
    Date of Patent: July 22, 2014
    Assignee: Intel Corporation
    Inventors: Niti Goel, Niloy Mukherjee, Seung Hoon Sung, Van H. Le, Matthew V. Metz, Jack T. Kavalieros, Ravi Pillarisetty, Sanaz K. Gardner, Sansaptak Dasgupta, Willy Rachmady, Benjamin Chu-Kung, Marko Radosavljevic, Gilbert Dewey, Marc C. French, Jessica Kachian, Satyarth Suri, Robert S. Chau
  • Patent number: 8785909
    Abstract: Non-planar semiconductor devices having channel regions with low band-gap cladding layers are described. For example, a semiconductor device includes a vertical arrangement of a plurality of nanowires disposed above a substrate. Each nanowire includes an inner region having a first band gap and an outer cladding layer surrounding the inner region. The cladding layer has a second, lower band gap. A gate stack is disposed on and completely surrounds the channel region of each of the nanowires. The gate stack includes a gate dielectric layer disposed on and surrounding the cladding layer and a gate electrode disposed on the gate dielectric layer. Source and drain regions are disposed on either side of the channel regions of the nanowires.
    Type: Grant
    Filed: September 27, 2012
    Date of Patent: July 22, 2014
    Assignee: Intel Corporation
    Inventors: Marko Radosavljevic, Gilbert Dewey, Benjamin Chu-Kung, Dipanjan Basu, Sanaz K. Gardner, Satyarth Suri, Ravi Pillarisetty, Niloy Mukherjee, Han Wui Then, Robert S. Chau
  • Patent number: 8768271
    Abstract: A III-N semiconductor channel is formed on a III-N transition layer formed on a (111) or (110) surface of a silicon template structure, such as a fin sidewall. In embodiments, the silicon fin has a width comparable to the III-N epitaxial film thicknesses for a more compliant seeding layer, permitting lower defect density and/or reduced epitaxial film thickness. In embodiments, a transition layer is GaN and the semiconductor channel comprises Indium (In) to increase a conduction band offset from the silicon fin. In other embodiments, the fin is sacrificial and either removed or oxidized, or otherwise converted into a dielectric structure during transistor fabrication. In certain embodiments employing a sacrificial fin, the III-N transition layer and semiconductor channel is substantially pure GaN, permitting a breakdown voltage higher than would be sustainable in the presence of the silicon fin.
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: July 1, 2014
    Assignee: Intel Corporation
    Inventors: Han Wui Then, Sansaptak Dasgupta, Marko Radosavljevic, Benjamin Chu-Kung, Sanaz K. Gardner, Seung Hoon Sung, Robert S. Chau
  • Publication number: 20140175509
    Abstract: An embodiment concerns forming an EPI film on a substrate where the EPI film has a different lattice constant from the substrate. The EPI film and substrate may include different materials to collectively form a hetero-epitaxial device having, for example, a Si and/or SiGe substrate and a III-V or IV film. The EPI film may be one of multiple EPI layers or films and the films may include different materials from one another and may directly contact one another. Further, the multiple EPI layers may be doped differently from another in terms of doping concentration and/or doping polarity. One embodiment includes creating a horizontally oriented hetero-epitaxial structure. Another embodiment includes a vertically oriented hetero-epitaxial structure. The hetero-epitaxial structures may include, for example, a bipolar junction transistor, heterojunction bipolar transistor, thyristor, and tunneling field effect transistor among others. Other embodiments are described herein.
    Type: Application
    Filed: December 21, 2012
    Publication date: June 26, 2014
    Inventors: BENJAMIN CHU-KUNG, VAN LE, ROBERT CHAU, SANSAPTAK DASGUPTA, GILBERT DEWEY, NITI GOEL, JACK KAVALIEROS, MATTHEW METZ, NILOY MUKHERJEE, RAVI PILLARISETTY, WILLY RACHMADY, MARKO RADOSAVLJEVIC, HAN WUI THEN, NANCY ZELICK
  • Publication number: 20140175378
    Abstract: An embodiment includes depositing a material onto a substrate where the material includes a different lattice constant than the substrate (e.g., III-V or IV epitaxial (EPI) material on a Si substrate). An embodiment includes an EPI layer formed within a trench having walls that narrow as the trench extends upwards. An embodiment includes an EPI layer formed within a trench using multiple growth temperatures. A defect barrier, formed in the EPI layer when the temperature changes, contains defects within the trench and below the defect barrier. The EPI layer above the defect barrier and within the trench is relatively defect free. An embodiment includes an EPI layer annealed within a trench to induce defect annihilation. An embodiment includes an EPI superlattice formed within a trench and covered with a relatively defect free EPI layer (that is still included in the trench). Other embodiments are described herein.
    Type: Application
    Filed: December 20, 2012
    Publication date: June 26, 2014
    Inventors: Niti Goel, Niloy Mukherjee, Seung Hoon Sung, Van Le, Matthew Metz, Jack Kavalieros, RAVI PILLARISETTY, Sanaz Gardner, SANSAPTAK DASGUPTA, Willy Rachmady, BENJAMIN CHU-KUNG, MARKO RADOSAVLJEVIC, Gilbert Dewey, Marc French, JESSICA KACHIAN, SATYARTH SURI, Robert Chau
  • Publication number: 20140175512
    Abstract: An embodiment uses a very thin layer nanostructure (e.g., a Si or SiGe fin) as a template to grow a crystalline, non-lattice matched, epitaxial (EPI) layer. In one embodiment the volume ratio between the nanostructure and EPI layer is such that the EPI layer is thicker than the nanostructure. In some embodiments a very thin bridge layer is included between the nanostructure and EPI. An embodiment includes a CMOS device where EPI layers covering fins (or that once covered fins) are oppositely polarized from one another. An embodiment includes a CMOS device where an EPI layer covering a fin (or that once covered a fin) is oppositely polarized from a bridge layer covering a fin (or that once covered a fin). Thus, various embodiments are disclosed from transferring defects from an EPI layer to a nanostructure (that is left present or removed). Other embodiments are described herein.
    Type: Application
    Filed: December 20, 2012
    Publication date: June 26, 2014
    Inventors: BENJAMIN CHU-KUNG, VAN LE, ROBERT CHAU, SANSAPTAK DASGUPTA, GILBERT DEWEY, NITI GOEL, JACK KAVALIEROS, MATTHEW METZ, NILOY MUKHERJEE, RAVI PILLARISETTY, WILLY RACHMADY, MARKO RADOSAVLJEVIC, HAN WUI THEN, NANCY ZELICK
  • Publication number: 20140175379
    Abstract: An embodiment of the invention includes an epitaxial layer that directly contacts, for example, a nanowire, fin, or pillar in a manner that allows the layer to relax with two or three degrees of freedom. The epitaxial layer may be included in a channel region of a transistor. The nanowire, fin, or pillar may be removed to provide greater access to the epitaxial layer. Doing so may allow for a “all-around gate” structure where the gate surrounds the top, bottom, and sidewalls of the epitaxial layer. Other embodiments are described herein.
    Type: Application
    Filed: December 20, 2012
    Publication date: June 26, 2014
    Inventors: BENJAMIN CHU-KUNG, VAN LE, ROBERT CHAU, SANSAPTAK DASGUPTA, GILBERT DEWEY, NITIKA GOEL, JACK KAVALIEROS, MATTHEW METZ, NILOY MUKHERJEE, RAVI PILLARISETTY, WILLY RACHMADY, MARKO RADOSAVLJEVIC, HAN WUI THEN, NANCY ZELICK
  • Publication number: 20140175515
    Abstract: A III-N semiconductor channel is compositionally graded between a transition layer and a III-N polarization layer. In embodiments, a gate stack is deposited over sidewalls of a fin including the graded III-N semiconductor channel allowing for formation of a transport channel in the III-N semiconductor channel adjacent to at least both sidewall surfaces in response to a gate bias voltage. In embodiments, a gate stack is deposited completely around a nanowire including a III-N semiconductor channel compositionally graded to enable formation of a transport channel in the III-N semiconductor channel adjacent to both the polarization layer and the transition layer in response to a gate bias voltage.
    Type: Application
    Filed: December 21, 2012
    Publication date: June 26, 2014
    Inventors: Han Wui THEN, Sansaptak DASGUPTA, Marko RADOSAVLJEVIC, Benjamin CHU-KUNG, Seung Hoon SUNG, Sanaz K. GARDNER, Robert S. CHAU
  • Publication number: 20140170998
    Abstract: A III-N semiconductor channel is formed on a III-N transition layer formed on a (111) or (110) surface of a silicon template structure, such as a fin sidewall. In embodiments, the silicon fin has a width comparable to the III-N epitaxial film thicknesses for a more compliant seeding layer, permitting lower defect density and/or reduced epitaxial film thickness. In embodiments, a transition layer is GaN and the semiconductor channel comprises Indium (In) to increase a conduction band offset from the silicon fin. In other embodiments, the fin is sacrificial and either removed or oxidized, or otherwise converted into a dielectric structure during transistor fabrication. In certain embodiments employing a sacrificial fin, the III-N transition layer and semiconductor channel is substantially pure GaN, permitting a breakdown voltage higher than would be sustainable in the presence of the silicon fin.
    Type: Application
    Filed: December 19, 2012
    Publication date: June 19, 2014
    Inventors: Han Wui THEN, Sansaptak DASGUPTA, Marko RADOSAVLJEVIC, Benjamin CHU-KUNG, Sanaz K. GARDNER, Seung Hoon SUNG, Robert S. CHAU
  • Publication number: 20140138744
    Abstract: Tunneling field effect transistors (TFETs) for CMOS architectures and approaches to fabricating N-type and P-type TFETs are described. For example, a tunneling field effect transistor (TFET) includes a homojunction active region disposed above a substrate. The homojunction active region includes a relaxed Ge or GeSn body having an undoped channel region therein. The homojunction active region also includes doped source and drain regions disposed in the relaxed Ge or GeSn body, on either side of the channel region. The TFET also includes a gate stack disposed on the channel region, between the source and drain regions. The gate stack includes a gate dielectric portion and gate electrode portion.
    Type: Application
    Filed: November 16, 2012
    Publication date: May 22, 2014
    Inventors: Roza Kotlyar, Stephen M. Cea, Gilbert Dewey, Benjamin Chu-Kung, Uygar E. Avci, Rafael Rios, Anurag Chaudhry, Thomas D. Linton, JR., Ian A. Young, Kelin J. Kuhn
  • Patent number: 8716751
    Abstract: An apparatus including a device including a channel material having a first lattice structure on a well of a well material having a matched lattice structure in a buffer material having a second lattice structure that is different than the first lattice structure. A method including forming a trench in a buffer material; forming an n-type well material in the trench, the n-type well material having a lattice structure that is different than a lattice structure of the buffer material; and forming an n-type transistor. A system including a computer including a processor including complimentary metal oxide semiconductor circuitry including an n-type transistor including a channel material, the channel material having a first lattice structure on a well disposed in a buffer material having a second lattice structure that is different than the first lattice structure, the n-type transistor coupled to a p-type transistor.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: May 6, 2014
    Assignee: Intel Corporation
    Inventors: Niti Goel, Ravi Pillarisetty, Niloy Mukherjee, Robert S. Chau, Willy Rachmady, Matthew V. Metz, Van H. Le, Jack T. Kavalieros, Marko Radosavljevic, Benjamin Chu-Kung, Gilbert Dewey, Seung Hoon Sung
  • Patent number: 8710490
    Abstract: Semiconductor devices having germanium active layers with underlying parasitic leakage barrier layers are described. For example, a semiconductor device includes a first buffer layer disposed above a substrate. A parasitic leakage barrier is disposed above the first buffer layer. A second buffer layer is disposed above the parasitic leakage barrier. A germanium active layer is disposed above the second buffer layer. A gate electrode stack is disposed above the germanium active layer. Source and drain regions are disposed above the parasitic leakage barrier, on either side of the gate electrode stack.
    Type: Grant
    Filed: September 27, 2012
    Date of Patent: April 29, 2014
    Assignee: Intel Corporation
    Inventors: Ravi Pillarisetty, Niti Goel, Han Wui Then, Van H. Le, Willy Rachmady, Marko Radosavljevic, Gilbert Dewey, Benjamin Chu-Kung
  • Publication number: 20140103397
    Abstract: Techniques are disclosed for forming a non-planar germanium quantum well structure. In particular, the quantum well structure can be implemented with group IV or III-V semiconductor materials and includes a germanium fin structure. In one example case, a non-planar quantum well device is provided, which includes a quantum well structure having a substrate (e.g. SiGe or GaAs buffer on silicon), a IV or III-V material barrier layer (e.g., SiGe or GaAs or AlGaAs), a doping layer (e.g., delta/modulation doped), and an undoped germanium quantum well layer. An undoped germanium fin structure is formed in the quantum well structure, and a top barrier layer deposited over the fin structure. A gate metal can be deposited across the fin structure. Drain/source regions can be formed at respective ends of the fin structure.
    Type: Application
    Filed: December 27, 2013
    Publication date: April 17, 2014
    Inventors: Ravi Pillarisetty, Jack T. Kavalieros, Willy Rachmady, Uday Shah, Benjamin Chu-Kung, Marko Radosavljevic, Niloy Mukherjee, Gilbert Dewey, Been Y. Jin, Robert S. Chau
  • Publication number: 20140091361
    Abstract: An apparatus including a device including a channel material having a first lattice structure on a well of a well material having a matched lattice structure in a buffer material having a second lattice structure that is different than the first lattice structure. A method including forming a trench in a buffer material; forming an n-type well material in the trench, the n-type well material having a lattice structure that is different than a lattice structure of the buffer material; and forming an n-type transistor. A system including a computer including a processor including complimentary metal oxide semiconductor circuitry including an n-type transistor including a channel material, the channel material having a first lattice structure on a well disposed in a buffer material having a second lattice structure that is different than the first lattice structure, the n-type transistor coupled to a p-type transistor.
    Type: Application
    Filed: September 28, 2012
    Publication date: April 3, 2014
    Inventors: Niti Goel, Ravi Pillarisetty, Niloy Mukherjee, Robert S. Chau, Willy Rachmady, Matthew V. Metz, Van H. Le, Jack T. Kavalieros, Marko Radosavljevic, Benjamin Chu-Kung, Gilbert Dewey, Seung Hoon Sung
  • Publication number: 20140084246
    Abstract: Semiconductor devices having germanium active layers with underlying parasitic leakage barrier layers are described. For example, a semiconductor device includes a first buffer layer disposed above a substrate. A parasitic leakage barrier is disposed above the first buffer layer. A second buffer layer is disposed above the parasitic leakage barrier. A germanium active layer is disposed above the second buffer layer. A gate electrode stack is disposed above the germanium active layer. Source and drain regions are disposed above the parasitic leakage barrier, on either side of the gate electrode stack.
    Type: Application
    Filed: September 27, 2012
    Publication date: March 27, 2014
    Inventors: Ravi Pillarisetty, Niti Goel, Han Wui Then, Van H. Le, Willy Rachmady, Marko Radosavljevic, Gilbert Dewey, Benjamin Chu-Kung
  • Publication number: 20140084343
    Abstract: Non-planar semiconductor devices having group III-V material active regions with multi-dielectric gate stacks are described. For example, a semiconductor device includes a hetero-structure disposed above a substrate. The hetero-structure includes a three-dimensional group III-V material body with a channel region. A source and drain material region is disposed above the three-dimensional group III-V material body. A trench is disposed in the source and drain material region separating a source region from a drain region, and exposing at least a portion of the channel region. A gate stack is disposed in the trench and on the exposed portion of the channel region. The gate stack includes first and second dielectric layers and a gate electrode.
    Type: Application
    Filed: September 27, 2012
    Publication date: March 27, 2014
    Inventors: Gilbert Dewey, Marko Radosavljevic, Ravi Pillarisetty, Benjamin Chu-Kung, Niloy Mukherjee