Patents by Inventor Benjamin Chu-Kung

Benjamin Chu-Kung has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110156005
    Abstract: A quantum well transistor has a germanium quantum well channel region. A silicon-containing etch stop layer provides easy placement of a gate dielectric close to the channel. A group III-V barrier layer adds strain to the channel. Graded silicon germanium layers above and below the channel region improve performance. Multiple gate dielectric materials allow use of a high-k value gate dielectric.
    Type: Application
    Filed: December 30, 2009
    Publication date: June 30, 2011
    Inventors: Ravi Pillarisetty, Been-Yih Jin, Benjamin Chu-Kung, Matthew V. Metz, Jack T. Kavalieros, Marko Radosavljevic, Roza Kotlyar, Willy Rachmady, Niloy Mukherjee, Gilbert Dewey, Robert S. Chau
  • Publication number: 20110147711
    Abstract: Techniques are disclosed for forming a non-planar germanium quantum well structure. In particular, the quantum well structure can be implemented with group IV or III-V semiconductor materials and includes a germanium fin structure. In one example case, a non-planar quantum well device is provided, which includes a quantum well structure having a substrate (e.g. SiGe or GaAs buffer on silicon), a IV or III-V material barrier layer (e.g., SiGe or GaAs or AlGaAs), a doping layer (e.g., delta/modulation doped), and an undoped germanium quantum well layer. An undoped germanium fin structure is formed in the quantum well structure, and a top barrier layer deposited over the fin structure. A gate metal can be deposited across the fin structure. Drain/source regions can be formed at respective ends of the fin structure.
    Type: Application
    Filed: December 23, 2009
    Publication date: June 23, 2011
    Inventors: Ravi Pillarisetty, Jack T. Kavalieros, Willy Rachmady, Uday Shah, Benjamin Chu-Kung, Marko Radosavljevic, Niloy Mukherjee, Gilbert Dewey, Been Y. Jin, Robert S. Chau
  • Publication number: 20110147708
    Abstract: Embodiments of the present disclosure describe structures and techniques to increase carrier injection velocity for integrated circuit devices. An integrated circuit device includes a semiconductor substrate, a first barrier film coupled with the semiconductor substrate, a quantum well channel coupled to the first barrier film, the quantum well channel comprising a first material having a first bandgap energy, and a source structure coupled to launch mobile charge carriers into the quantum well channel, the source structure comprising a second material having a second bandgap energy, wherein the second bandgap energy is greater than the first bandgap energy. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: December 21, 2009
    Publication date: June 23, 2011
    Inventors: Marko Radosavljevic, Benjamin Chu-Kung, Gilbert Dewey, Niloy Mukherjee
  • Publication number: 20110147697
    Abstract: The present disclosure relates to the field of fabricating microelectronic devices. In at least one embodiment, the present disclosure relates to forming an isolated nanowire, wherein isolation structure adjacent the nanowire provides a substantially level surface for the formation of microelectronic structures thereon.
    Type: Application
    Filed: December 18, 2009
    Publication date: June 23, 2011
    Inventors: Uday Shah, Benjamin Chu-Kung, Been-Yih Jin, Ravi Pillarisetty, Marko Radosavljevic, Willy Rachmady
  • Publication number: 20110147713
    Abstract: Techniques are disclosed for providing a low resistance self-aligned contacts to devices formed in a semiconductor heterostructure. The techniques can be used, for example, for forming contacts to the gate, source and drain regions of a quantum well transistor fabricated in III-V and SiGe/Ge material systems. Unlike conventional contact process flows which result in a relatively large space between the source/drain contacts to gate, the resulting source and drain contacts provided by the techniques described herein are self-aligned, in that each contact is aligned to the gate electrode and isolated therefrom via spacer material.
    Type: Application
    Filed: December 23, 2009
    Publication date: June 23, 2011
    Inventors: Ravi Pillarisetty, Benjamin Chu-Kung, Mantu K. Hudait, Marko Radosavljevic, Jack T. Kavalieros, Willy Rachmady, Niloy Mukherjee, Robert S. Chau
  • Publication number: 20100327317
    Abstract: Embodiments of an apparatus and methods for providing germanium on insulator using a large bandgap barrier layer are generally described herein. Other embodiments may be described and claimed.
    Type: Application
    Filed: June 26, 2009
    Publication date: December 30, 2010
    Inventors: Ravi Pillarisetty, Mantu Hudait, Marko Radosavljevic, Benjamin Chu-Kung, Jack Kavalieros
  • Publication number: 20100230658
    Abstract: Embodiments of an apparatus and methods of providing a quantum well device for improved parallel conduction are generally described herein. Other embodiments may be described and claimed.
    Type: Application
    Filed: March 16, 2009
    Publication date: September 16, 2010
    Inventors: Ravi Pillarisetty, Mantu Hudalt, Been-Yih Jin, Benjamin Chu-Kung, Robert Chau
  • Publication number: 20100213441
    Abstract: A quantum well (QW) layer is provided in a semiconductive device. The QW layer is provided with a beryllium-doped halo layer in a barrier structure below the QW layer. The semiconductive device includes InGaAs bottom and top barrier layers respectively below and above the QW layer. The semiconductive device also includes a high-k gate dielectric layer that sits on the InP spacer first layer in a gate recess. A process of forming the QW layer includes using an off-cut semiconductive substrate.
    Type: Application
    Filed: February 20, 2009
    Publication date: August 26, 2010
    Inventors: Ravi Pillarisetty, Titash Rakshit, Mantu Hudait, Marko Radosavljevic, Gilbert Dewey, Benjamin Chu-Kung
  • Patent number: 7777282
    Abstract: A microelectronic device includes a tunneling pocket within an asymmetrical semiconductive body including source- and drain wells. The tunneling pocket is formed by a self-aligned process by removing a dummy gate electrode from a gate spacer and by implanting the tunneling pocket into the semiconductive body or into an epitaxial film that is part of the semiconductive body.
    Type: Grant
    Filed: August 13, 2008
    Date of Patent: August 17, 2010
    Assignee: Intel Corporation
    Inventors: Prashant Majhi, Wilman Tsai, Jack Kavalieros, Ravi Pillarisetty, Benjamin Chu-Kung
  • Publication number: 20100163849
    Abstract: A quantum well is formed for a deep well III-V semiconductor device using double pass patterning. In one example, the well is formed by forming a first photolithography pattern over terminals on a material stack, etching a well between the terminals using the first photolithography patterning, removing the first photolithography pattern, forming a second photolithography pattern over the terminals and at least a portion of the well, deepening the well between the terminals by etching using the second photolithography pattern, removing the second photolithography pattern, and finishing the terminals and the well to form a device on the material stack.
    Type: Application
    Filed: December 31, 2008
    Publication date: July 1, 2010
    Inventors: MARKO RADOSAVLIJEVIC, Benjamin Chu-Kung, Mantu K. Hudait, Ravi Pillarisetty
  • Publication number: 20100163838
    Abstract: A method is provided. The method includes forming a plurality of nanowires on a top surface of a substrate and forming an oxide layer adjacent to a bottom surface of each of the plurality of nanowires, wherein the oxide layer is to isolate each of the plurality of nanowires from the substrate.
    Type: Application
    Filed: December 30, 2008
    Publication date: July 1, 2010
    Inventors: Benjamin Chu-Kung, Uday Shah, Ravi Pillarisetty, Been-Yih Jin, Marko Radosavljevic, Willy Rachmady
  • Publication number: 20100155701
    Abstract: A self-aligned replacement metal gate QWFET device comprises a III-V quantum well layer formed on a substrate, a III-V barrier layer formed on the quantum well layer, a III-V etch stop layer formed on the III-V barrier layer, a III-V source extension region formed on the III-V etch stop layer and having a first sidewall, a source region formed on the III-V source extension region and having a second sidewall, a III-V drain extension region formed on the III-V etch stop layer and having a third sidewall, a drain region formed on the III-V drain extension region and having a fourth sidewall, a conformal high-k gate dielectric layer formed on the first, second, third, and fourth sidewalls and on a top surface of the etch stop layer, and a metal layer formed on the high-k gate dielectric layer.
    Type: Application
    Filed: December 23, 2008
    Publication date: June 24, 2010
    Inventors: Marko Radosavljevic, Benjamin Chu-Kung, Mantu K. Hudait, Ravi Pillarisetty
  • Publication number: 20100038713
    Abstract: A microelectronic device includes a tunneling pocket within an asymmetrical semiconductive body including source- and drain wells. The tunneling pocket is formed by a self-aligned process by removing a dummy gate electrode from a gate spacer and by implanting the tunneling pocket into the semiconductive body or into an epitaxial film that is part of the semiconductive body.
    Type: Application
    Filed: August 13, 2008
    Publication date: February 18, 2010
    Inventors: Prashant Majhi, William Tsai, Jack Kavalieros, Ravi Pillarisetty, Benjamin Chu-Kung
  • Publication number: 20100032763
    Abstract: A microelectronic device includes a P-I-N (p+ region, intrinsic semiconductor, and n+ region) semiconductive body with a first gate and a second gate. The first gate is a gate stack disposed on an upper surface plane, and the second gate accesses the semiconductive body from a second plane that is out of the first plane.
    Type: Application
    Filed: August 6, 2008
    Publication date: February 11, 2010
    Inventors: Ravi Pillarisetty, Jack Kavalieros, Marko Radosavljevic, Benjamin Chu-Kung