Patents by Inventor Benjamin Colombeau
Benjamin Colombeau has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250112054Abstract: Exemplary methods of semiconductor processing may include providing an etchant precursor to a processing region of a semiconductor processing chamber. A structure may be disposed within the processing region. The structure may include a first silicon-containing material. The structure may include a second silicon-containing material, an oxygen-containing material, or both. The methods may include contacting the structure with the etchant precursor. The contacting with the etchant precursor may etch at least a portion of the second silicon-containing material or the oxygen-containing material from the structure. The methods may include providing a carbon-containing precursor to the processing region of the semiconductor processing chamber. The methods may include contacting the structure with the carbon-containing precursor. The contacting with the carbon-containing precursor may replenish carbon in the first silicon-containing material.Type: ApplicationFiled: September 24, 2024Publication date: April 3, 2025Applicant: Applied Materials, Inc.Inventors: Yuriy Shusterman, Sean Reidy, Sai Hooi Yeong, Lisa Megan McGill, Benjamin Colombeau, Andre P. Labonte, Veeraraghavan S. Basker, Balasubramanian Pranatharthiharan
-
Publication number: 20250113577Abstract: Embodiments of the disclosure advantageously provide semiconductor devices, fin field effect transistors (FinFETs) in particular, and methods of manufacturing such devices having improved effective capacitance (Ceff). The FinFETs include a gate structure in which airgaps are provided by recessing a high-k material layer disposed between the gate structure and a spacer layer, thereby reducing the effective dielectric constant in the high-k dielectric layer and improving effective capacitance (Ceff) of the device.Type: ApplicationFiled: September 23, 2024Publication date: April 3, 2025Applicant: Applied Materials, Inc.Inventors: Veeraraghavan S. Basker, Sai Hooi Yeong, Ashish Pal, El Mehdi Bazizi, Benjamin Colombeau, Balasubramanian Pranatharthiharan
-
Patent number: 12261047Abstract: A method of selectively and conformally doping semiconductor materials is disclosed. Some embodiments utilize a conformal dopant film deposited selectively on semiconductor materials by thermal decomposition. Some embodiments relate to doping non-line of sight surfaces. Some embodiments relate to methods for forming a highly doped crystalline semiconductor layer.Type: GrantFiled: August 5, 2022Date of Patent: March 25, 2025Assignee: Applied Materials, Inc.Inventors: Wolfgang Aderhold, Yi-Chiau Huang, Wei Liu, Benjamin Colombeau, Abhilash Mayur
-
Patent number: 12249511Abstract: A method of forming a semiconductor structure includes annealing a surface of a substrate in an ambient of hydrogen to smooth the surface, pre-cleaning the surface of the substrate, depositing a high-? dielectric layer on the pre-cleaned surface of the substrate, performing a re-oxidation process to thermally oxidize the surface of the substrate; performing a plasma nitridation process to insert nitrogen atoms in the deposited high-? dielectric layer, and performing a post-nitridation anneal process to passivate chemical bonds in the plasma nitridated high-? dielectric layer.Type: GrantFiled: March 4, 2021Date of Patent: March 11, 2025Assignee: Applied Materials, Inc.Inventors: Steven C. H. Hung, Lin Dong, Benjamin Colombeau, Johanes F. Swenberg, Linlin Wang
-
Patent number: 12243941Abstract: Horizontal gate-all-around devices and methods of manufacturing the same are described. The hGAA devices comprise an oxidize layer on a semiconductor material between source regions and drain regions of the device. The method includes radical plasma oxidation (RPO) of semiconductor material layers between source regions and drain regions of an electronic device.Type: GrantFiled: July 28, 2021Date of Patent: March 4, 2025Assignee: Applied Materials, Inc.Inventors: Myungsun Kim, Michael Stolfi, Benjamin Colombeau, Andy Lo
-
Publication number: 20250040170Abstract: A method of forming a portion of a gate-all-around field-effect transistor (GAA FET) includes forming placeholders, each interfacing with an extension region via a cap layer, in recesses formed in portions of a substrate isolated by shallow trench isolations (STIs), the recesses extending into an inter-layer dielectric (ILD) formed on the substrate, removing the placeholders selectively to the substrate, the cap layers, and the STIs, forming selective cap layers at bottoms of the recesses, performing a substrate removal process to isotropically etch the substrate within the recesses, performing a conformal deposition process to form a spacer on exposed surfaces of the substrate and the selective cap layers within the recesses, sculpting the spacer on sidewalls of the substrate and the STIs within the recesses, performing a cap layer removal process to remove the cap layers within the recesses, and forming metal contacts within the recesses.Type: ApplicationFiled: June 10, 2024Publication date: January 30, 2025Inventors: Veeraraghavan S. BASKER, Gregory COSTRINI, Ashish PAL, Benjamin COLOMBEAU, Balasubramanian PRANATHARTHIHARAN
-
Patent number: 12183798Abstract: A method of forming a gate stack structure includes forming a dipole metal layer on a high-? gate dielectric layer on a semiconductor structure formed on a substrate, annealing the dipole metal layer, and removing the dipole metal layer. The dipole metal layer comprises dopants in the high-? gate dielectric layer.Type: GrantFiled: November 17, 2021Date of Patent: December 31, 2024Assignee: Applied Materials, Inc.Inventors: Steven C. H. Hung, Benjamin Colombeau, Myungsun Kim, Srinivas Gandikota, Yixiong Yang, Jacqueline Samantha Wrench, Yong Yang
-
Publication number: 20240332388Abstract: One or more embodiments of the disclosure are directed to methods of forming semiconductor devices, e.g., gate-all-around (GAA) transistors that are used in FEOL and/or BEOL processes. The processes described herein may be integrated and performed in any suitable cluster tool. Some embodiments of the disclosure are directed to cavity shaping processes. Further embodiments of the disclosure are directed to logic transistors with wrap-around backside source/drain contact.Type: ApplicationFiled: March 19, 2024Publication date: October 3, 2024Applicant: Applied Materials, Inc.Inventors: Byeong Chan Lee, Benjamin Colombeau, Nicolas Breil, Ashish Pal, El Mehdi Bazizi, Veeraraghavan S. Basker, Balasubramanian Pranatharthiharan, Pratik B. Vyas, Gregory Costrini
-
Publication number: 20240321584Abstract: Semiconductor devices, such as gate-all-around (GAA) devices, and methods of forming semiconductor devices are described. Selective oxidation processes that are useful in front-end of line (FEOL) and back-end of line (BEOL) applications and processes are also described. In FEOL processes, for example, selective oxidation protects silicon germanium (SiGe) layers during etching silicon (Si) channel recess when there is no dielectric inner spacer present. In BEOL processes, for example, selective oxidation protects growth of silicon germanium (SiGe) layers on the sidewall of a superlattice structure during bottom-up epitaxial growth.Type: ApplicationFiled: March 13, 2024Publication date: September 26, 2024Applicant: Applied Materials, Inc.Inventors: Byeong Chan Lee, Benjamin Colombeau, Edy Cardona, Christopher S. Olsen, Shawn Thomas
-
Publication number: 20240290883Abstract: The present technology includes semiconductor devices with improved stress in a channel region. The semiconductor device includes a substrate, a source region, a drain region, a channel region that includes at least one channel located between the source and the drain, a first gate region, and a second gate region. The first gate region includes a self-aligned single diffusion break, and the second gate region includes a first gate enclosing the channel between the source region and the drain region. The self-aligned single diffusion break also contains a dielectric liner and a stressed metal fill, where the stressed metal fill exhibits a stress of about 350 MPa or greater.Type: ApplicationFiled: February 14, 2024Publication date: August 29, 2024Applicant: Applied Materials, Inc.Inventors: Sai Hooi Yeong, Hui Zhao, Ashish Pal, El Mehdi Bazizi, Benjamin Colombeau, Balasubramanian Pranatharthiharan, Lequn Liu
-
Publication number: 20240290884Abstract: The present technology includes semiconductor devices with improved stress in a channel region. The semiconductor devices include a substrate, a source region, a drain region, a channel region that includes at least one channel located between the source and the drain, a first gate region, and a second gate region. The first gate region includes a self-aligned single diffusion break, and the second gate region includes a first gate enclosing the channel between the source region and the drain region. The self-aligned single diffusion break also contains a stressed dielectric material having a stress of about 500 MPa or greater.Type: ApplicationFiled: February 14, 2024Publication date: August 29, 2024Applicant: Applied Materials, Inc.Inventors: El Mehdi Bazizi, Sai Hooi Yeong, Benjamin Colombeau, Balasubramanian Pranatharthiharan, Hui Zhao, Ashish Pal
-
Publication number: 20240290885Abstract: The present technology includes semiconductor devices with improved stress in a channel region. The semiconductor device includes a substrate, a source region, a drain region, a channel region that includes at least one channel located between the source and the drain. Devices include a first gate region having a first self-aligned single diffusion break in a n-MOS region, and a second gate region includes having a self-aligned single diffusion break in a p-MOS region. The second self-aligned single diffusion break also contains a liner and a compressive stressed material, where the stressed metal fill exhibits a compressive stress of about 350 MPa or greater.Type: ApplicationFiled: February 14, 2024Publication date: August 29, 2024Applicant: Applied Materials, Inc.Inventors: Sai Hooi Yeong, Benjamin Colombeau, Balasubramanian Pranatharthiharan, El Mehdi Bazizi, Hui Zhao, Ashish Pal
-
Patent number: 12062708Abstract: Horizontal gate-all-around devices and methods of manufacturing same are described. The hGAA devices comprise a trimmed semiconductor material between source regions and drain regions of the device. The method includes selectively isotropically etching semiconductor material layers between source regions and drain regions of an electronic device.Type: GrantFiled: October 18, 2022Date of Patent: August 13, 2024Assignee: Applied Materials, Inc.Inventors: Michael Stolfi, Myungsun Kim, Benjamin Colombeau, Sanjay Natarajan
-
Publication number: 20240234544Abstract: Semiconductor devices (e.g., gate-all-around (GAA) devices), process tools for manufacturing GAA devices and methods of manufacturing GAA devices, and inner spacer liners and inner spacers for GAA devices, are described. The methods comprise forming an inner spacer liner within a superlattice structure formed on a top surface of a semiconductor substrate. The superlattice structure has a plurality of recessed semiconductor material layers (e.g., silicon germanium (SiGe)) and a corresponding plurality of channel layers (e.g., silicon (Si)) alternatingly arranged in a plurality of stacked pairs. The inner spacer liner comprises a crystalline silicon-containing liner formed by a selective epitaxial growth (SEG) process. The crystalline silicon-containing liner may be doped with a dopant (e.g., a p-type dopant or an n-type dopant). One or more operations of the methods described herein are performed in situ in an integrated processing tool system.Type: ApplicationFiled: December 13, 2023Publication date: July 11, 2024Applicant: Applied Materials, Inc.Inventors: Sai Hooi Yeong, Benjamin Colombeau, Liu Jiang, El Mehdi Bazizi, Byeong Chan Lee, Balasubramanian Pranatharthiharan
-
Publication number: 20240234531Abstract: Semiconductor devices (e.g., gate-all-around (GAA) devices), process tools for manufacturing GAA devices and methods of manufacturing GAA devices, and inner spacer liners and inner spacers for GAA devices, are described. The methods comprise performing a chemical vapor deposition (CVD) process to form an amorphous silicon liner and an inner spacer within a superlattice structure formed on a top surface of a semiconductor substrate. The superlattice structure has a plurality of semiconductor material layers (e.g., silicon germanium (SiGe)) and a corresponding plurality of channel layers (e.g., silicon (Si)). The amorphous silicon liner is conformally formed along the GAA device, including along the recessed semiconductor material layers and the corresponding plurality of channel layers, and the inner spacer is formed directly on the amorphous silicon liner. One or more operations of the methods described herein are performed in situ in an integrated processing tool system.Type: ApplicationFiled: December 13, 2023Publication date: July 11, 2024Applicant: Applied Materials, Inc.Inventors: Sai Hooi Yeong, Liu Jiang, Susmit Singha Roy, Abhijit Basu Mallick, Benjamin Colombeau, El Mehdi Bazizi, Balasubramanian Pranatharthiharan
-
Patent number: 12027607Abstract: Electronic devices and methods of forming electronic devices with gate-all-around non-I/O devices and finlike structures for I/O devices are described. A plurality of dummy gates is etched to expose a fin comprising alternating layers of a first material and a second material. The second material layers are removed to create openings and the first material layers remaining are epitaxially grown to form a finlike structure.Type: GrantFiled: June 18, 2022Date of Patent: July 2, 2024Assignee: Applied Materials, Inc.Inventors: Benjamin Colombeau, Matthias Bauer, Naved Ahmed Siddiqui, Phillip Stout
-
Publication number: 20240194757Abstract: Semiconductor devices (e.g., gate-all-around (GAA) devices), process tools for manufacturing GAA devices and methods of manufacturing GAA devices and multilayer inner spacers for GAA devices are described. The multilayer inner spacer comprises an inner layer, a middle layer, and an outer layer within a superlattice structure formed on a top surface of a substrate. The superlattice structure has a plurality of semiconductor material layers (e.g., silicon germanium (SiGe)) and a corresponding plurality of channel layers (e.g., silicon (Si)) alternatingly arranged in a plurality of stacked pairs. In some embodiments, the methods are performed in situ in an integrated deposition and etch processing system.Type: ApplicationFiled: October 24, 2023Publication date: June 13, 2024Applicant: Applied Materials, Inc.Inventors: Sai Hooi Yeong, Liu Jiang, Susmit Singha Roy, Abhijit Basu Mallick, El Mehdi Bazizi, Benjamin Colombeau
-
Publication number: 20240136229Abstract: A method of forming a multi-layer semiconductor device on a substrate includes forming a superlattice of a plurality of alternating first layers composed of a first material and second layers formed of a second material, removing the second layers of the superlattice, etching the first material layers to form trimmed first layers therefrom, wherein the quantity of material removed from different ones of the first layers are different amounts, forming a capping layer over the first layers, measuring at least one of the distance between the capping layers formed on the different ones of the first layers, the thicknesses of the different ones of the capping layers formed on different ones of the trimmed first layers, and the different thicknesses of the combined thickness of different ones of the trimmed first layers and the capping layer formed thereover, and based on differences in the measurements, calculating a new thickness of the etched first layers.Type: ApplicationFiled: September 6, 2023Publication date: April 25, 2024Inventors: Jody FRONHEISER, Sai Hooi YEONG, Benjamin COLOMBEAU, Balasubramanian PRANATHARTHIHARAN, Lequn LIU
-
Publication number: 20240120193Abstract: Exemplary methods of semiconductor processing may include etching a portion of a silicon-containing material from a substrate disposed within a processing region of a semiconductor processing chamber. The silicon-containing material may extend into one or more recesses defined by alternating layers of material deposited on the substrate. The methods may include providing a carbon-containing precursor to the processing region of the semiconductor processing chamber. The methods may include contacting a remaining silicon-containing material with the carbon-containing precursor. The contacting with the carbon-containing precursor may replenish carbon in the silicon-containing material. The methods may include providing a cleaning agent to the processing region of the semiconductor processing chamber. The methods may include contacting the substrate with the cleaning agent. The contacting with the cleaning precursor may remove surface oxide from the substrate.Type: ApplicationFiled: October 5, 2022Publication date: April 11, 2024Applicant: Applied Materials, Inc.Inventors: Shankar Venkataraman, Zeqing Shen, Susmit Singha Roy, Abhijit Basu Mallick, Lakmal C. Kalutarage, Jongbeom Seo, Sai Hooi Yeong, Benjamin Colombeau, Balasubramanian Pranatharthiharan
-
Patent number: 11923441Abstract: Described is a method of manufacturing a gate-all-around electronic device. The method includes forming a thermal oxide layer though an enhanced in situ steam generation process in combination with atomic layer deposition of a low-? layer. The thin thermal oxide layer passivates the interface between the silicon layer and the dielectric layer of the GAA. A passivation process after the deposition of the low-? layer reduces the bulk trap and enhances the breakdown performance of the GAA transistor.Type: GrantFiled: August 16, 2022Date of Patent: March 5, 2024Assignee: Applied Materials, Inc.Inventors: Steven C. H. Hung, Benjamin Colombeau, Andy Lo, Byeong Chan Lee, Johanes F. Swenberg, Theresa Kramer Guarini, Malcolm J. Bevan