Patents by Inventor Benjamin Cook

Benjamin Cook has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190340678
    Abstract: A portable web widget for distribution of multimedia content over a computer communications network, the web widget adapted for viral distribution and execution in a web browser on a client device wherein the widget includes a content retrieval component communicatively coupled to an application server over the computer communications network, the content retrieval component configured to retrieve one or more multimedia display files and metadata into an embedded electronic commerce store in the web widget after it enters an active operational mode, the widget also including a content preview component configured to enable a streamed execution of a portion of the multimedia content files associated with each of the multimedia display files from a multimedia content distribution system executing on the application server, and a transaction processing component operative to execute and complete a commercial transaction in the embedded electronic commerce store pertaining to the multimedia content files.
    Type: Application
    Filed: July 15, 2019
    Publication date: November 7, 2019
    Inventors: David Robb, Grant Neerings, Cameron Patterson, Joseph Rodriguez, Quinton Richard Harris, Benjamin Cook
  • Publication number: 20190334220
    Abstract: A wave communication system includes an integrated circuit and a multilayered substrate. The multilayered substrate is electrically coupled to the integrated circuit. The multilayered substrate includes an antenna structure configured to transmit a circularly polarized wave in response to signals from the integrated circuit.
    Type: Application
    Filed: April 24, 2019
    Publication date: October 31, 2019
    Inventors: Hassan Omar Ali, Juan Alejandro Herbsommer, Benjamin Cook, Swaminathan Sankaran
  • Patent number: 10424551
    Abstract: In described examples of forming an integrated circuit wave device, a method includes: (a) affixing an integrated circuit die relative to a substrate; (b) creating a form relative to the integrated circuit die and the substrate; and (c) forming a wave shaping member having a shape conforming at least in part to a shape of the form.
    Type: Grant
    Filed: March 6, 2018
    Date of Patent: September 24, 2019
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Barry Jon Male, Benjamin Cook, Robert Alan Neidorff, Steve Kummerl
  • Patent number: 10374621
    Abstract: A chip scale vapor cell and millimeter wave atomic clock apparatus are disclosed. The chip scale vapor cell includes a first substrate and a second substrate bonded to the first substrate with a bonding material. A primary hermetic cavity includes a first bottom wall and first sidewalls formed in the first substrate and a first top wall formed by the lower surface of the second substrate. A secondary hermetic cavity includes a second bottom wall and second sidewalls formed in the first substrate and a second top wall formed by the lower surface of the second substrate. The secondary hermetic cavity is separate from the primary hermetic cavity and surrounds the perimeter of the primary hermetic cavity. A gas, which can be a dipolar molecular gas, is sealed in the primary hermetic cavity and the secondary hermetic cavity at a given initial pressure.
    Type: Grant
    Filed: December 1, 2016
    Date of Patent: August 6, 2019
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Juan Herbsommer, Benjamin Cook, S. Josh Jacobs
  • Publication number: 20190169019
    Abstract: A packaged micro-electro-mechanical system (MEMS) device (100) comprises a circuitry chip (101) attached to the pad (110) of a substrate with leads (111), and a MEMS (150) vertically attached to the chip surface by a layer (140) of low modulus silicone compound. On the chip surface, the MEMS device is surrounded by a polyimide ring (130) with a surface phobic to silicone compounds. A dome-shaped glob (160) of cured low modulus silicone material covers the MEMS and the MEMS terminal bonding wire spans (180); the glob is restricted to the chip surface area inside the polyimide ring and has a surface non-adhesive to epoxy-based molding compounds. A package (190) of polymeric molding compound encapsulates the vertical assembly of the glob embedding the MEMS, the circuitry chip, and portions of the substrate; the molding compound is non-adhering to the glob surface yet adhering to all other surfaces.
    Type: Application
    Filed: February 4, 2019
    Publication date: June 6, 2019
    Inventors: Kurt Peter Wachtler, Makoto Yoshino, Ayumu Kuroda, Brian E. Goodlin, Karen Kirmse, Benjamin Cook, Genki Yano, Stuart Jacobsen
  • Publication number: 20190144267
    Abstract: Described examples include sensor apparatus and integrated circuits having a package structure with an internal cavity and an opening that connects of the cavity with an ambient condition of an exterior of the package structure, and an electronic sensor structure mechanically supported by wires in the cavity and including a sensing surface exposed to the cavity to sense the ambient condition of an exterior of the package structure.
    Type: Application
    Filed: January 14, 2019
    Publication date: May 16, 2019
    Inventors: Barry Jon Male, Benjamin Cook, Robert Alan Neidorff, Steve Kummerl
  • Publication number: 20190139868
    Abstract: Semiconductor devices and methods and apparatus to produce such semiconductor devices are disclosed. An integrated circuit package includes a lead frame including a die attach pad and a plurality of leads; a die including a MEMs region defined by a plurality of trenches, the die electrically connected to the plurality of leads; and a mold compound covering portions of the die, the mold compound defining a cavity between a surface of the die and a surface of the mold compound, wherein the mold compound defines a vent.
    Type: Application
    Filed: November 9, 2017
    Publication date: May 9, 2019
    Inventors: Robert Allan Neidorff, Benjamin Cook, Steven Alfred Kummerl, Barry Jon Male, Peter Smeys
  • Patent number: 10233074
    Abstract: A packaged micro-electro-mechanical system (MEMS) device (100) comprises a circuitry chip (101) attached to the pad (110) of a substrate with leads (111), and a MEMS (150) vertically attached to the chip surface by a layer (140) of low modulus silicone compound. On the chip surface, the MEMS device is surrounded by a polyimide ring (130) with a surface phobic to silicone compounds. A dome-shaped glob (160) of cured low modulus silicone material covers the MEMS and the MEMS terminal bonding wire spans (180); the glob is restricted to the chip surface area inside the polyimide ring and has a surface non-adhesive to epoxy-based molding compounds. A package (190) of polymeric molding compound encapsulates the vertical assembly of the glob embedding the MEMS, the circuitry chip, and portions of the substrate; the molding compound is non-adhering to the glob surface yet adhering to all other surfaces.
    Type: Grant
    Filed: January 10, 2018
    Date of Patent: March 19, 2019
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Kurt Peter Wachtler, Makoto Yoshino, Ayumu Kuroda, Brian E. Goodlin, Karen Kirmse, Benjamin Cook, Genki Yano, Stuart Jacobsen
  • Publication number: 20190033400
    Abstract: A magnetometer for measuring an external magnetic influence proximate the magnetometer. The magnetometer has: (i) a volumetric enclosure for storing an alkali metal; (2) a laser proximate the volumetric enclosure and having an axis in a first dimension and along which photons are directed toward a first surface of the volumetric enclosure; (3) a photodetector proximate a second surface of the volumetric enclosure and for receiving light emanating from the laser and passing through the volumetric enclosure, wherein the photodetector is for providing a photodetector signal in response to an intensity of light emanating from the laser and passing through the volumetric enclosure; and (4) at least one magnetic field reducer for providing a magnetic field in a second dimension orthogonal to the first dimension.
    Type: Application
    Filed: July 31, 2017
    Publication date: January 31, 2019
    Inventors: Benjamin Cook, Juan Herbsommer
  • Patent number: 10179730
    Abstract: Disclosed examples include sensor apparatus and integrated circuits having a package structure with an internal cavity and an opening that connects of the cavity with an ambient condition of an exterior of the package structure, and an electronic sensor structure mechanically supported by wires in the cavity and including a sensing surface exposed to the cavity to sense the ambient condition of an exterior of the package structure.
    Type: Grant
    Filed: December 8, 2016
    Date of Patent: January 15, 2019
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Barry Jon Male, Benjamin Cook, Robert Alan Neidorff, Steve Kummerl
  • Patent number: 10074639
    Abstract: Disclosed examples include integrated circuits with a leadframe structure, a first circuit structure including a light source configured to generate a light signal along an optical path, a second circuit structure including a light sensor facing the optical path to receive the light signal, and a molded package structure enclosing portions of the leadframe structure, the molded package structure having a cavity defined by an interior surface of the molded package structure, the optical path extending in the cavity between the first and second circuit structures.
    Type: Grant
    Filed: December 30, 2016
    Date of Patent: September 11, 2018
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Barry Jon Male, Benjamin Cook, Robert Alan Neidorff, Steve Kummerl
  • Publication number: 20180197830
    Abstract: In described examples of forming an integrated circuit wave device, a method includes: (a) affixing an integrated circuit die relative to a substrate; (b) creating a form relative to the integrated circuit die and the substrate; and (c) forming a wave shaping member having a shape conforming at least in part to a shape of the form.
    Type: Application
    Filed: March 6, 2018
    Publication date: July 12, 2018
    Inventors: Barry Jon Male, IV, Benjamin Cook, Robert Alan Neidorff, Steve Kummerl
  • Publication number: 20180190628
    Abstract: Disclosed examples include integrated circuits with a leadframe structure, a first circuit structure including a light source configured to generate a light signal along an optical path, a second circuit structure including a light sensor facing the optical path to receive the light signal, and a molded package structure enclosing portions of the leadframe structure, the molded package structure having a cavity defined by an interior surface of the molded package structure, the optical path extending in the cavity between the first and second circuit structures.
    Type: Application
    Filed: December 30, 2016
    Publication date: July 5, 2018
    Applicant: Texas Instruments Incorporated
    Inventors: Barry Jon Male, Benjamin Cook, Robert Alan Neidorff, Steve Kummerl
  • Publication number: 20180162722
    Abstract: Disclosed examples include sensor apparatus and integrated circuits having a package structure with an internal cavity and an opening that connects of the cavity with an ambient condition of an exterior of the package structure, and an electronic sensor structure mechanically supported by wires in the cavity and including a sensing surface exposed to the cavity to sense the ambient condition of an exterior of the package structure.
    Type: Application
    Filed: December 8, 2016
    Publication date: June 14, 2018
    Applicant: Texas Instruments Incorporated
    Inventors: Barry Jon Male, Benjamin Cook, Robert Alan Neidorff, Steve Kummerl
  • Publication number: 20180159547
    Abstract: A chip scale vapor cell and millimeter wave atomic clock apparatus are disclosed. The chip scale vapor cell includes a first substrate and a second substrate bonded to the first substrate with a bonding material. A primary hermetic cavity includes a first bottom wall and first sidewalls formed in the first substrate and a first top wall formed by the lower surface of the second substrate. A secondary hermetic cavity includes a second bottom wall and second sidewalls formed in the first substrate and a second top wall formed by the lower surface of the second substrate. The secondary hermetic cavity is separate from the primary hermetic cavity and surrounds the perimeter of the primary hermetic cavity. A gas, which can be a dipolar molecular gas, is sealed in the primary hermetic cavity and the secondary hermetic cavity at a given initial pressure.
    Type: Application
    Filed: December 1, 2016
    Publication date: June 7, 2018
    Inventors: Juan Herbsommer, Benjamin Cook, S. Josh Jacobs
  • Publication number: 20180156875
    Abstract: A package for a chip scale atomic clock or magnetometer is disclosed. The package includes a vapor cell using an alkali metal vapor, first and second photodetectors, and a laser operable at a frequency that excites an electron transition in the alkali metal vapor. The laser is positioned to provide an optical signal directed through the vapor cell and towards the first photodetector. The package further contains a polarizing beam splitter, the polarizing beam splitter positioned between the vapor cell and the first photodetector to receive the optical signal and to split the optical signal into a first signal directed toward the first photodetector and a second signal directed toward the second photodetector, the first signal being orthogonal to the second signal.
    Type: Application
    Filed: December 2, 2016
    Publication date: June 7, 2018
    Inventors: Juan Herbsommer, Benjamin Cook
  • Publication number: 20180127266
    Abstract: A packaged micro-electro-mechanical system (MEMS) device (100) comprises a circuitry chip (101) attached to the pad (110) of a substrate with leads (111), and a MEMS (150) vertically attached to the chip surface by a layer (140) of low modulus silicone compound. On the chip surface, the MEMS device is surrounded by a polyimide ring (130) with a surface phobic to silicone compounds. A dome-shaped glob (160) of cured low modulus silicone material covers the MEMS and the MEMS terminal bonding wire spans (180); the glob is restricted to the chip surface area inside the polyimide ring and has a surface non-adhesive to epoxy-based molding compounds. A package (190) of polymeric molding compound encapsulates the vertical assembly of the glob embedding the MEMS, the circuitry chip, and portions of the substrate; the molding compound is non-adhering to the glob surface yet adhering to all other surfaces.
    Type: Application
    Filed: January 10, 2018
    Publication date: May 10, 2018
    Inventors: Kurt Peter Wachtler, Makoto Yoshino, Ayumu Kuroda, Brian E. Goodlin, Karen Kirmse, Benjamin Cook, Genki Yano, Stuart Jacobsen
  • Patent number: 9929110
    Abstract: A method of forming, and a resulting, an integrated circuit wave device. The method (i) affixes an integrated circuit die relative to a substrate; (ii) creates a form relative to the integrated circuit die and the substrate; and (iii) forms a wave shaping member having a shape conforming at least in part to a shape of the form.
    Type: Grant
    Filed: December 30, 2016
    Date of Patent: March 27, 2018
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Barry Jon Male, Benjamin Cook, Robert Alan Neidorff, Steve Kummerl
  • Patent number: 9896330
    Abstract: A packaged micro-electro-mechanical system (MEMS) device (100) comprises a circuitry chip (101) attached to the pad (110) of a substrate with leads (111), and a MEMS (150) vertically attached to the chip surface by a layer (140) of low modulus silicone compound. On the chip surface, the MEMS device is surrounded by a polyimide ring (130) with a surface phobic to silicone compounds. A dome-shaped glob (160) of cured low modulus silicone material covers the MEMS and the MEMS terminal bonding wire spans (180); the glob is restricted to the chip surface area inside the polyimide ring and has a surface non-adhesive to epoxy-based molding compounds. A package (190) of polymeric molding compound encapsulates the vertical assembly of the glob embedding the MEMS, the circuitry chip, and portions of the substrate; the molding compound is non-adhering to the glob surface yet adhering to all other surfaces.
    Type: Grant
    Filed: April 21, 2016
    Date of Patent: February 20, 2018
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Kurt Peter Wachtler, Makoto Yoshino, Ayumu Kuroda, Brian E. Goodlin, Karen Kirmse, Benjamin Cook, Genki Yano, Stuart Jacobsen
  • Patent number: 9761543
    Abstract: Integrated circuits with a molded package including a cavity and a semiconductor die spaced from an interior surface of the molded package within the cavity. The semiconductor die includes one or more electrical components, a thermal control component to control the temperature of the electrical component, and a driver to provide a current or voltage signal to the thermal control component at least partially according to a setpoint signal.
    Type: Grant
    Filed: December 20, 2016
    Date of Patent: September 12, 2017
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Barry Jon Male, Benjamin Cook, Robert Alan Neidorff, Steve Kummerl