Patents by Inventor BENJAMIN STASSEN COOK

BENJAMIN STASSEN COOK has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240109247
    Abstract: A layer of additive material is formed in a circular printing area on a substrate using additive sources distributed across a printing zone. The additive sources form predetermined discrete amounts of the additive material. The substrate and the additive sources are rotated with respect to each other around a center of rotation, so that a pattern of the additive material is formed in a circular printing area on the substrate. Each additive source receives actuation waveforms at an actuation frequency that is proportional to a distance of the additive source from the center of rotation. The actuation waveforms include formation signals, with a maximum of one formation signal in each cycle of the actuation frequency. The formation signals result in the additive sources forming the predetermined discrete amounts of the additive material on the substrate.
    Type: Application
    Filed: December 4, 2023
    Publication date: April 4, 2024
    Inventors: Daniel Lee Revier, Sean Ping Chang, Benjamin Stassen Cook
  • Patent number: 11948871
    Abstract: Disclosed embodiments include an integrated circuit (IC) comprising a silicon wafer, first and second conductive lines on the silicon wafer. There are first, second and third insulation blocks with portions on the first and second conductive lines and the silicon wafer, a metal pillar on the surface of the first conductive line opposite the silicon wafer, and a conductive adhesive block on the surface of the second conductive line opposite the silicon wafer. The IC also has a lead frame having first and second leads, and a capacitor having first and second capacitor terminals in which the first capacitor terminal is connected to the second lead using conductive adhesive, the second capacitor terminal is connected to the second conductive line through the conductive adhesive block, and the first lead is coupled to the first conductive line.
    Type: Grant
    Filed: May 19, 2021
    Date of Patent: April 2, 2024
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Benjamin Stassen Cook, Yogesh Kumar Ramadass, Salvatore Frank Pavone, Mahmud Halim Chowdhury
  • Patent number: 11938715
    Abstract: A microstructure comprises a plurality of interconnected units wherein the units are formed of graphene tubes. The graphene tubes may be formed by photo-initiating the polymerization of a monomer in a pattern of interconnected units to form a polymer microlattice, removing unpolymerized monomer, coating the polymer microlattice with a metal, removing the polymer microlattice to leave a metal microlattice, depositing graphitic carbon on the metal microlattice, converting the graphitic carbon to graphene, and removing the metal microlattice.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: March 26, 2024
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Luigi Colombo, Nazila Dadvand, Benjamin Stassen Cook, Archana Venugopal
  • Publication number: 20240077514
    Abstract: A method comprises receiving a signal from a piezoelectric device and receiving a measurement of a temperature of the piezoelectric device. The method further comprises reading a first parameter from a memory, in which the first parameter depends on the temperature and relates the signal to an acceleration value and reading a second parameter from the memory, in which the second parameter represents a degree of drift of the piezoelectric device at the temperature. The method further comprises determining an acceleration of the piezoelectric device based on the signal, the first parameter, and the second parameter.
    Type: Application
    Filed: November 13, 2023
    Publication date: March 7, 2024
    Applicant: Texas Instruments Incorporated
    Inventors: Scott Robert SUMMERFELT, Benjamin Stassen COOK
  • Patent number: 11908776
    Abstract: A semiconductor device includes a metal substrate including a through-hole aperture having a multi-size cavity including a larger area first cavity portion above a smaller area second cavity portion that defines a first ring around the second cavity portion, where the first cavity portion is sized with area dimensions to receive a semiconductor die having a top side with circuitry coupled to bond pads thereon and a back side with a metal (BSM) layer thereon. The semiconductor die is mounted top side up with the BSM layer on the first ring. A metal die attach layer directly contacts the BSM layer, sidewalls of the bottom cavity portion, and a bottom side of the metal substrate.
    Type: Grant
    Filed: January 6, 2021
    Date of Patent: February 20, 2024
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Benjamin Stassen Cook, Nazila Dadvand, Sreenivasan Koduri
  • Patent number: 11865773
    Abstract: A layer of additive material is formed in a circular printing area on a substrate using additive sources distributed across a printing zone. The additive sources form predetermined discrete amounts of the additive material. The substrate and the additive sources are rotated with respect to each other around a center of rotation, so that a pattern of the additive material is formed in a circular printing area on the substrate. Each additive source receives actuation waveforms at an actuation frequency that is proportional to a distance of the additive source from the center of rotation. The actuation waveforms include formation signals, with a maximum of one formation signal in each cycle of the actuation frequency. The formation signals result in the additive sources forming the predetermined discrete amounts of the additive material on the substrate.
    Type: Grant
    Filed: November 11, 2019
    Date of Patent: January 9, 2024
    Assignee: Texas Instruments Incorporated
    Inventors: Daniel Lee Revier, Sean Ping Chang, Benjamin Stassen Cook
  • Patent number: 11869925
    Abstract: In described examples, a method for fabricating a semiconductor device and a three dimensional structure, and packaging them together, includes: fabricating the integrated circuit on a substrate, immersing the substrate in a liquid encapsulation material, and illuminating the liquid encapsulation material to polymerize the liquid encapsulation material. Immersing the semiconductor device is performed to cover a layer of a platform in the liquid encapsulation material. The platform is a lead frame, a packaging substrate, or the substrate. The illuminating step targets locations of the liquid encapsulation material covering the layer. Illuminated encapsulation material forms solid encapsulation material that is fixedly coupled to contiguous portions of the semiconductor device and of the solid encapsulation material. The immersing and illuminating steps are repeated until a three dimensional structure is formed. The integrated circuit and the three dimensional structure are encapsulated in a single package.
    Type: Grant
    Filed: February 1, 2021
    Date of Patent: January 9, 2024
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Benjamin Stassen Cook, Daniel Lee Revier
  • Patent number: 11869864
    Abstract: In some examples, a system comprises a set of nanoparticles and a set of nanowires extending from the set of nanoparticles.
    Type: Grant
    Filed: February 24, 2022
    Date of Patent: January 9, 2024
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Benjamin Stassen Cook, Ralf Muenster, Sreenivasan Kalyani Koduri
  • Patent number: 11854933
    Abstract: In described examples, a semiconductor wafer with a thermally conductive surface layer comprises a bulk semiconductor layer having a first surface and a second surface, circuitry on the first surface, a metallic layer attached to the first surface or the second surface, and a graphene layer attached to the metallic layer. The first surface opposes the second surface. The metallic layer comprises a transition metal.
    Type: Grant
    Filed: December 30, 2020
    Date of Patent: December 26, 2023
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Benjamin Stassen Cook, Nazila Dadvand, Archana Venugopal, Daniel Lee Revier
  • Patent number: 11815526
    Abstract: A method includes measuring a temperature of a semiconductor die, in which the semiconductor die includes a piezoelectric device, a pyroelectric device, and a memory. The method further includes receiving a first signal from the pyroelectric device, and based on the first signal, determining a parameter to be combined with a second signal from the piezoelectric device. The method further includes storing the parameter and the measured temperature into the memory.
    Type: Grant
    Filed: April 28, 2022
    Date of Patent: November 14, 2023
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Scott Robert Summerfelt, Benjamin Stassen Cook
  • Publication number: 20230335355
    Abstract: A switch that includes a droplet capable of spreading between two conductors to allow them to be coupled when a voltage is applied. The droplet can be enclosed by a cap that is bonded to a wafer that the droplet is placed upon, and include metallic properties. The cap can create a cavity that may be filled by a fluid, gas, or vapor. The cavity can have multiple conductors that extend partially or fully through it. The droplet can couple the conductors when specific voltages, or frequencies are applied to them. At the specific voltage and frequency, the droplet can spread, allowing at least two conductors to be coupled.
    Type: Application
    Filed: June 23, 2023
    Publication date: October 19, 2023
    Inventors: Adam Joseph Fruehling, Dishit Paresh Parekh, Daniel Lee Revier, Benjamin Stassen Cook
  • Patent number: 11791296
    Abstract: In some examples, an electronic device comprises a first component having a surface, a second component having a surface, and a bond layer positioned between the surfaces of the first and second components to couple the first and second components to each other. The bond layer includes a set of metallic nanowires and a dielectric portion. The dielectric portion comprises a polymer matrix and dielectric nanoparticles.
    Type: Grant
    Filed: December 7, 2021
    Date of Patent: October 17, 2023
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Scott Robert Summerfelt, Benjamin Stassen Cook, Ralf Jakobskrueger Muenster, Sreenivasan Kalyani Koduri
  • Patent number: 11774519
    Abstract: In a described example, a structure includes a substrate having a surface with multiple sides. A sensor is positioned within the substrate and a seed layer is over at least four sides of the surface of the substrate. A magnetic shield layer is over the seed layer for the at least four sides of the surface of the substrate.
    Type: Grant
    Filed: August 26, 2020
    Date of Patent: October 3, 2023
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Yong Deng, Jo Bito, Benjamin Stassen Cook
  • Publication number: 20230307312
    Abstract: An integrated circuit has a substrate and an interconnect region disposed on the substrate. The interconnect region includes a plurality of interconnect levels. Each interconnect level includes interconnects in dielectric material. The integrated circuit includes a thermal via in the interconnect region. The thermal via extends vertically in at least one of the interconnect levels in the interconnect region. The thermal via includes a cohered nanoparticle film in which adjacent nanoparticles are cohered to each other. The thermal via has a thermal conductivity higher than dielectric material touching the thermal via. The cohered nanoparticle film is formed by a method which includes an additive process.
    Type: Application
    Filed: May 4, 2023
    Publication date: September 28, 2023
    Inventors: Benjamin Stassen Cook, Archana Venugopal, Luigi Colombo, Robert Reid Doering
  • Patent number: 11728111
    Abstract: A switch that includes a droplet capable of spreading between two conductors to allow them to be coupled when a voltage is applied. The droplet can be enclosed by a cap that is bonded to a wafer that the droplet is placed upon, and include metallic properties. The cap can create a cavity that may be filled by a fluid, gas, or vapor. The cavity can have multiple conductors that extend partially or fully through it. The droplet can couple the conductors when specific voltages, or frequencies are applied to them. At the specific voltage and frequency the droplet can spread allowing at least two conductors to be coupled.
    Type: Grant
    Filed: December 27, 2018
    Date of Patent: August 15, 2023
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Adam Joseph Fruehling, Dishit Paresh Parekh, Daniel Lee Revier, Benjamin Stassen Cook
  • Patent number: 11728242
    Abstract: In some examples, a semiconductor package comprises a semiconductor die having a first surface and a second surface opposing the first surface. The package comprises an orifice extending through a thickness of the semiconductor die from the first surface to the second surface. The package comprises a set of metallic nanowires positioned within the orifice and extending through the thickness of the semiconductor die from the first surface to the second surface.
    Type: Grant
    Filed: April 8, 2020
    Date of Patent: August 15, 2023
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Benjamin Stassen Cook, Ralf Jakobskrueger Muenster, Sreenivasan Kalyani Koduri
  • Publication number: 20230243770
    Abstract: A gas sensor has a microstructure sensing element which comprises a plurality of interconnected units wherein the units are formed of connected graphene tubes. The graphene tubes may be formed by photo-initiating the polymerization of a monomer in a pattern of interconnected units to form a polymer microlattice, removing unpolymerized monomer, coating the polymer microlattice with a metal, removing the polymer microlattice to leave a metal microlattice, depositing graphitic carbon on the metal microlattice, converting the graphitic carbon to graphene, and removing the metal microlattice.
    Type: Application
    Filed: March 8, 2023
    Publication date: August 3, 2023
    Applicant: Texas Instruments Incorporated
    Inventors: Archana VENUGOPAL, Benjamin Stassen Cook, Nazila Dadvand, Luigi Colombo
  • Patent number: 11714011
    Abstract: A system comprises a member to receive a mechanical force, and a sensor to sense the mechanical force. The sensor is mounted on the member using a set of nanoparticles and a set of nanowires coupled to the set of nanoparticles.
    Type: Grant
    Filed: April 8, 2020
    Date of Patent: August 1, 2023
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Ralf Jakobskrueger Muenster, Sreenivasan Kalyani Koduri, Benjamin Stassen Cook
  • Patent number: 11693235
    Abstract: An apparatus includes a mass detection circuit coupled to a surface covered with a plurality of electrodes. The mass detection circuit is configured to detect a mass of a first droplet present on the surface. The apparatus further includes a transducer circuit coupled to a transducer, which is coupled to the surface and form a lens unit. The transducer circuit configured to excite a first vibration of the surface at a resonant frequency to form a high displacement region on the surface. The apparatus also includes a voltage excitation circuit coupled to the plurality of electrodes. In response to the detection of the mass of the first droplet, the voltage excitation circuit is configured to apply a sequence of differential voltages on one or more consecutive electrodes which moves the first droplet to the high displacement region.
    Type: Grant
    Filed: February 2, 2021
    Date of Patent: July 4, 2023
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Daniel Lee Revier, Benjamin Stassen Cook, David Patrick Magee, Stephen John Fedigan
  • Patent number: 11677156
    Abstract: An antenna integrated in a device package is formed such that at least a portion of the antenna is elevated with respect to a substrate of the device package. The entire antenna and its functionality are positioned within a space extending vertically upwardly from a footprint of the substrate that contains circuitry of the device. The boundary of the space is defined by the perimeter of an over mold positioned on the substrate and encapsulating the circuitry.
    Type: Grant
    Filed: May 24, 2021
    Date of Patent: June 13, 2023
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Hassan Omar Ali, Richard George Wallace, Benjamin Stassen Cook, Swaminathan Sankaran, Sanjay Mohan