Patents by Inventor Bernhard Goller

Bernhard Goller has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210253421
    Abstract: A method for producing MEMS components comprises generating a carrier having a plurality of recesses. An adhesive structure is arranged on the carrier and in the recesses. A semiconductor wafer is generated, which has a plurality of MEMS structures arranged at the first main surface of the semiconductor wafer. The adhesive structure is attached to the first main surface of the semiconductor wafer, with the recesses being arranged above the MEMS structures and the adhesive structure not contacting the MEMS structures. The semiconductor wafer is singulated into a plurality of MEMS components by applying a mechanical dicing process.
    Type: Application
    Filed: February 8, 2021
    Publication date: August 19, 2021
    Inventors: Andre BROCKMEIER, Markus BERGMEISTER, Bernhard GOLLER, Daniel PIEBER, Sokratis SGOURIDIS
  • Patent number: 11088009
    Abstract: According to various embodiments, a support table may include: a baseplate including a support structure, the support structure defining a support region over the baseplate to support at least one of a workpiece or a workpiece carrier therein; and one or more light-emitting components disposed between the baseplate and the support region. The one or more light-emitting components are configured to emit light into the support region.
    Type: Grant
    Filed: July 17, 2019
    Date of Patent: August 10, 2021
    Assignee: Infineon Technologies AG
    Inventors: Bernhard Goller, Walter Leitgeb, Daniel Brunner, Lukas Ferlan, Markus Ottowitz
  • Patent number: 11031466
    Abstract: A method of manufacturing a semiconductor device includes: forming one or more device epitaxial layers over a main surface of a doped Si base substrate; forming a diffusion barrier structure including alternating layers of Si and oxygen-doped Si in an upper part of the doped Si base substrate adjacent the main surface of the doped Si base substrate, in a lower part of the one or more device epitaxial layers adjacent the main surface of the doped Si base substrate, or in one or more additional epitaxial layers disposed between the main surface of the doped Si base substrate and the one or more device epitaxial layers; and forming a gate above the diffusion barrier structure.
    Type: Grant
    Filed: June 9, 2020
    Date of Patent: June 8, 2021
    Assignees: Infineon Technologies Austria AG, Infineon Technologies Americas Corp.
    Inventors: Martin Poelzl, Robert Haase, Maximilian Roesch, Sylvain Leomant, Andreas Meiser, Bernhard Goller, Ravi Keshav Joshi
  • Publication number: 20210053148
    Abstract: Provided is a parent substrate that includes a central region and an edge region. The edge region surrounds the central region. A detachment layer is formed in the central region. The detachment layer extends parallel to a main surface of the parent substrate. The detachment layer includes modified substrate material. A groove is formed in the edge region. The groove laterally encloses the central region. The groove runs vertically and/or tilted to the detachment layer.
    Type: Application
    Filed: August 6, 2020
    Publication date: February 25, 2021
    Inventors: Ralf Rieske, Alexander Binter, Wolfgang Diewald, Bernhard Goller, Heimo Graf, Gerald Lackner, Jan Richter, Roland Rupp, Guenter Schagerl, Marko Swoboda
  • Patent number: 10903078
    Abstract: A method for processing a silicon carbide wafer includes implanting ions into the silicon carbide wafer to form an absorption layer in the silicon carbide wafer. The absorption coefficient of the absorption layer is at least 100 times the absorption coefficient of silicon carbide material of the silicon carbide wafer outside the absorption layer, for light of a target wavelength. The silicon carbide wafer is split along the absorption layer at least by irradiating the silicon carbide wafer with light of the target wavelength to obtain a silicon carbide device wafer and a remaining silicon carbide wafer.
    Type: Grant
    Filed: May 24, 2019
    Date of Patent: January 26, 2021
    Assignee: Infineon Technologies AG
    Inventors: Hans-Joachim Schulze, Alexander Breymesser, Guenter Denifl, Mihai Draghici, Bernhard Goller, Tobias Franz Wolfgang Hoechbauer, Wolfgang Lehnert, Roland Rupp, Werner Schustereder
  • Patent number: 10868172
    Abstract: A semiconductor device includes: a gate trench extending into a Si substrate; a body region in the Si substrate, the body region including a vertical channel region adjacent a sidewall of the gate trench; a source region in the Si substrate above the body region; a contact trench extending into the Si substrate and separated from the gate trench by a portion of the source region and by a portion of the body region; an electrically conductive material in the contact trench; and a diffusion barrier structure interposed between a sidewall of the contact trench and the vertical channel region, the diffusion barrier structure including alternating layers of Si and oxygen-doped Si and configured to increase carrier mobility within the vertical channel region. Corresponding methods of manufacture are also described.
    Type: Grant
    Filed: December 18, 2019
    Date of Patent: December 15, 2020
    Assignee: Infineon Technologies Austria AG
    Inventors: Oliver Blank, Thomas Feil, Maximilian Roesch, Martin Poelzl, Robert Haase, Sylvain Leomant, Bernhard Goller, Andreas Meiser
  • Patent number: 10861966
    Abstract: A semiconductor device includes: a gate trench extending into a Si substrate; a body region in the Si substrate adjacent the gate trench; a source region in the Si substrate above the body region; a diffusion barrier structure adjacent a sidewall of the gate trench, the diffusion barrier structure including alternating layers of Si and oxygen-doped Si and a Si capping layer on the alternating layers of Si and oxygen-doped Si; and a channel region formed in the Si capping layer and which vertically extends along the sidewall of the gate trench. Corresponding methods of manufacture are also described.
    Type: Grant
    Filed: December 18, 2019
    Date of Patent: December 8, 2020
    Assignee: Infineon Technologies Austria AG
    Inventors: Thomas Feil, Robert Haase, Martin Poelzl, Maximilian Roesch, Sylvain Leomant, Bernhard Goller, Ravi Keshav Joshi
  • Publication number: 20200365457
    Abstract: A substrate wafer arrangement includes a substrate layer having a first main side and a second main side opposite the first main side, the first main side being a front-side and the second main side being a back-side, the substrate layer further having a plurality of semiconductor chips. A polymer structure arranged between the plurality of semiconductor chips extends at least from the front-side of the substrate layer to the back-side of the substrate layer and protrudes from a back-side surface of the substrate layer. The polymer structure separates a plurality of insular islands of conductive material, each insular island corresponding to a respective semiconductor chip of the plurality of semiconductor chips. Semiconductor devices produced from the substrate wafer arrangement are also described.
    Type: Application
    Filed: July 24, 2020
    Publication date: November 19, 2020
    Inventors: Ingo Muri, Bernhard Goller
  • Publication number: 20200365385
    Abstract: One or more semiconductor manufacturing methods and/or semiconductor arrangements are provided. In an embodiment, a silicon carbide (SiC) layer is provided. The SiC layer has a first portion overlying a second portion. The first portion has a first side distal the second portion and a second side proximal the second portion. The first portion is converted into a porous layer overlying the second portion. The porous layer has a first side distal the second portion and a second side proximal the second portion. The porous layer is removed to expose a first side of the second portion. After removing the porous layer, the first side of the second portion has a surface roughness less than a surface roughness of the first side of the first portion and/or less than a surface roughness of the first side of the porous layer.
    Type: Application
    Filed: May 14, 2019
    Publication date: November 19, 2020
    Inventors: Bernhard GOLLER, Iris Moder, Petra Fischer
  • Publication number: 20200303498
    Abstract: A method of manufacturing a semiconductor device includes: forming one or more device epitaxial layers over a main surface of a doped Si base substrate; forming a diffusion barrier structure including alternating layers of Si and oxygen-doped Si in an upper part of the doped Si base substrate adjacent the main surface of the doped Si base substrate, in a lower part of the one or more device epitaxial layers adjacent the main surface of the doped Si base substrate, or in one or more additional epitaxial layers disposed between the main surface of the doped Si base substrate and the one or more device epitaxial layers; and forming a gate above the diffusion barrier structure.
    Type: Application
    Filed: June 9, 2020
    Publication date: September 24, 2020
    Inventors: Martin Poelzl, Robert Haase, Maximilian Roesch, Sylvain Leomant, Andreas Meiser, Bernhard Goller, Ravi Keshav Joshi
  • Patent number: 10784161
    Abstract: A method for manufacturing a semiconductor device includes: partially dicing a substrate wafer arrangement having a plurality of semiconductor chips, wherein the partial dicing forms trenches around the semiconductor chips on a front-side of the substrate wafer arrangement, the depth being greater than a target thickness of a semiconductor chip; filling the trenches with a polymer material to form a polymer structure; first thinning of the back-side to expose portions of the polymer structure; forming a conductive layer on the back-side of the substrate wafer arrangement so that the exposed portions of the polymer structure are covered; second thinning of the back-side to form insular islands of conductive material, the insular islands separated from each other by the polymer structure, each insular island corresponding to a respective one of the semiconductor chips; and dicing the substrate wafer arrangement along the polymer structure.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: September 22, 2020
    Assignee: Infineon Technologies AG
    Inventors: Ingo Muri, Bernhard Goller
  • Publication number: 20200286730
    Abstract: A semiconductor substrate includes a base portion, an auxiliary layer and a surface layer. The auxiliary layer is formed on the base portion. The surface layer is formed on the auxiliary layer. The surface layer is in contact with a first main surface of the semiconductor substrate. The auxiliary layer has a different electrochemical dissolution efficiency than the base portion and the surface layer. At least a portion of the auxiliary layer and at least a portion of the surface layer are converted into a porous structure. Subsequently, an epitaxial layer is formed on the first main surface.
    Type: Application
    Filed: March 6, 2020
    Publication date: September 10, 2020
    Inventors: Iris MODER, Bernhard GOLLER, Tobias Franz Wolfgang HOECHBAUER, Roland RUPP, Francisco Javier SANTOS RODRIGUEZ, Hans-Joachim SCHULZE
  • Patent number: 10749216
    Abstract: A battery includes a first substrate having a first main surface, a second substrate made of a conducting material or semiconductor material, and a carrier of an insulating material. The carrier has a first and a second main surfaces, the second substrate being attached to the first main surface of the carrier. An opening is formed in the second main surface of the carrier to uncover a portion of a second main surface of the second substrate. The second main surface of the carrier is attached to the first substrate, thereby forming a cavity. The battery further includes an electrolyte disposed in the cavity.
    Type: Grant
    Filed: March 31, 2014
    Date of Patent: August 18, 2020
    Assignee: Infineon Technologies AG
    Inventors: Ravi Keshav Joshi, Alexander Breymesser, Bernhard Goller, Kamil Karlovsky, Francisco Javier Santos Rodriguez, Peter Zorn
  • Patent number: 10741638
    Abstract: A semiconductor device includes a doped Si base substrate, one or more device epitaxial layers formed over a main surface of the doped Si base substrate, a diffusion barrier structure, and a gate formed above the diffusion barrier structure. The diffusion barrier structure includes alternating layers of Si and oxygen-doped Si formed in an upper part of the doped Si base substrate adjacent the main surface of the doped Si base substrate, in a lower part of the one or more device epitaxial layers adjacent the main surface of the doped Si base substrate, or in one or more additional epitaxial layers disposed between the main surface of the doped Si base substrate and the one or more device epitaxial layers.
    Type: Grant
    Filed: August 8, 2018
    Date of Patent: August 11, 2020
    Assignee: Infineon Technologies Austria AG
    Inventors: Martin Poelzl, Robert Haase, Maximilian Roesch, Sylvain Leomant, Andreas Meiser, Bernhard Goller, Ravi Keshav Joshi
  • Patent number: 10714377
    Abstract: A method of manufacturing a semiconductor device includes forming an auxiliary mask including a plurality of mask openings on a main surface of a crystalline semiconductor substrate. A porous structure is formed in the semiconductor substrate. The porous structure includes a porous layer at a distance to the main surface and porous columns that extend from the porous layer into direction of the main surface and that are laterally separated from each other by a non-porous portion. A non-porous device layer is formed on the non-porous portion and on the porous columns.
    Type: Grant
    Filed: September 5, 2018
    Date of Patent: July 14, 2020
    Assignee: Infineon Technologies AG
    Inventors: Ingo Muri, Bernhard Goller, Iris Moder, Hans-Joachim Schulze
  • Publication number: 20200168449
    Abstract: A method includes: in a semiconductor wafer including a first semiconductor layer and a second semiconductor layer adjoining the first semiconductor layer, forming a porous region extending from a first surface into the first semiconductor layer; and removing the porous region by an etching process, wherein a doping concentration of the second semiconductor layer is less than 10?2 times a doping concentration of the first semiconductor layer and/or a doping type of the second semiconductor layer is complementary to a doping type of the first semiconductor layer.
    Type: Application
    Filed: November 8, 2019
    Publication date: May 28, 2020
    Inventors: Sophia Friedler, Bernhard Goller, Iris Moder, Ingo Muri
  • Publication number: 20200127134
    Abstract: A semiconductor device includes: a gate trench extending into a Si substrate; a body region in the Si substrate, the body region including a vertical channel region adjacent a sidewall of the gate trench; a source region in the Si substrate above the body region; a contact trench extending into the Si substrate and separated from the gate trench by a portion of the source region and by a portion of the body region; an electrically conductive material in the contact trench; and a diffusion barrier structure interposed between a sidewall of the contact trench and the vertical channel region, the diffusion barrier structure including alternating layers of Si and oxygen-doped Si and configured to increase carrier mobility within the vertical channel region. Corresponding methods of manufacture are also described.
    Type: Application
    Filed: December 18, 2019
    Publication date: April 23, 2020
    Inventors: Oliver Blank, Thomas Feil, Maximilian Roesch, Martin Poelzl, Robert Haase, Sylvain Leomant, Bernhard Goller, Andreas Meiser
  • Publication number: 20200127135
    Abstract: A semiconductor device includes: a gate trench extending into a Si substrate; a body region in the Si substrate adjacent the gate trench; a source region in the Si substrate above the body region; a diffusion barrier structure adjacent a sidewall of the gate trench, the diffusion barrier structure including alternating layers of Si and oxygen-doped Si and a Si capping layer on the alternating layers of Si and oxygen-doped Si; and a channel region formed in the Si capping layer and which vertically extends along the sidewall of the gate trench. Corresponding methods of manufacture are also described.
    Type: Application
    Filed: December 18, 2019
    Publication date: April 23, 2020
    Inventors: Thomas Feil, Robert Haase, Martin Poelzl, Maximilian Roesch, Sylvain Leomant, Bernhard Goller, Ravi Keshav Joshi
  • Patent number: 10580888
    Abstract: A semiconductor device includes a gate trench extending into a Si substrate, a body region in the Si substrate, the body region including a channel region which extends along a sidewall of the gate trench, a source region in the Si substrate above the body region, a contact trench extending into the Si substrate and separated from the gate trench by a portion of the source region and a portion of the body region, the contact trench being filled with an electrically conductive material which contacts the source region at a sidewall of the contact trench and a highly doped body contact region at a bottom of the contact trench, and a diffusion barrier structure formed along the sidewall of the contact trench and disposed between the highly doped body contact region and the channel region, the diffusion barrier structure including alternating layers of Si and oxygen-doped Si.
    Type: Grant
    Filed: August 8, 2018
    Date of Patent: March 3, 2020
    Assignee: Infineon Technologies Austria AG
    Inventors: Oliver Blank, Thomas Feil, Maximilian Roesch, Martin Poelzl, Robert Haase, Sylvain Leomant, Bernhard Goller, Andreas Meiser
  • Patent number: 10573742
    Abstract: A semiconductor device includes a gate trench extending into a Si substrate, a body region in the Si substrate adjacent the gate trench, a source region in the Si substrate above the body region, a contact trench extending into the Si substrate and filled with an electrically conductive material which contacts the source region at a sidewall of the contact trench and a highly doped body contact region at a bottom of the contact trench, a diffusion barrier structure formed along the sidewall of the gate trench, the diffusion barrier structure comprising alternating layers of Si and oxygen-doped Si and a Si capping layer on the alternating layers of Si and oxygen-doped Si, and a channel region formed in the Si capping layer and which vertically extends along the sidewall of the gate trench. Corresponding methods of manufacture are also described.
    Type: Grant
    Filed: August 8, 2018
    Date of Patent: February 25, 2020
    Assignee: Infineon Technologies Austria AG
    Inventors: Thomas Feil, Robert Haase, Martin Poelzl, Maximilian Roesch, Sylvain Leomant, Bernhard Goller, Ravi Keshav Joshi