Patents by Inventor Bernhard Löffler

Bernhard Löffler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11923467
    Abstract: A semiconductor device for infrared detection comprises a stack of a first semiconductor layer, a second semiconductor layer and an optical coupling layer. The first semiconductor layer has a first type of conductivity and the second semiconductor layer has a second type of conductivity. The optical coupling layer comprises an optical coupler and at least a first lateral absorber region. The optical coupler is configured to deflect incident light towards the first lateral absorber region. The first lateral absorber region comprises an absorber material with a bandgap Eg in the infrared, IR.
    Type: Grant
    Filed: June 4, 2020
    Date of Patent: March 5, 2024
    Assignee: AMS AG
    Inventors: Gerald Meinhardt, Ingrid Jonak-Auer, Gernot Fasching, Bernhard Löffler
  • Publication number: 20220310857
    Abstract: A semiconductor device for infrared detection comprises a stack of a first semiconductor layer, a second semiconductor layer and an optical coupling layer. The first semiconductor layer has a first type of conductivity and the second semiconductor layer has a second type of conductivity. The optical coupling layer comprises an optical coupler and at least a first lateral absorber region. The optical coupler is configured to deflect incident light towards the first lateral absorber region. The first lateral absorber region comprises an absorber material with a bandgap Eg in the infrared, IR.
    Type: Application
    Filed: June 4, 2020
    Publication date: September 29, 2022
    Inventors: Gerald MEINHARDT, Ingrid JONAK-AUER, Gernot FASCHING, Bernhard LÖFFLER
  • Patent number: 11335824
    Abstract: The near-infrared photodetector semiconductor device comprises a semiconductor layer (1) of a first type of conductivity with a main surface (10), a trench or a plurality of trenches (2) in the semiconductor layer at the main surface, a SiGe alloy layer (3) in the trench or the plurality of trenches, and an electrically conductive filling material of a second type of conductivity in the trench or the plurality of trenches, the second type of conductivity being opposite to the first type of conductivity.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: May 17, 2022
    Assignee: AMS AG
    Inventors: Ingrid Jonak-Auer, Gerald Meinhardt, Bernhard Löffler
  • Publication number: 20220059434
    Abstract: An intermetal dielectric and metal layers embedded in the intermetal dielectric are arranged on a substrate of semiconductor material. A via hole is formed in the substrate, and a metallization contacting a contact area of one of the metal layers is applied in the via hole. The metallization, the metal layer comprising the contact area and the intermetal dielectric are partially removed at the bottom of the via hole in order to form a hole penetrating the intermetal dielectric and extending the via hole. A continuous passivation is arranged on sidewalls within the via hole and the hole, and the metallization contacts the contact area around the hole. Thus the presence of a thin membrane of layers, which is usually formed at the bottom of a hollow through-substrate via, is avoided.
    Type: Application
    Filed: December 20, 2019
    Publication date: February 24, 2022
    Inventors: Bernhard LOEFFLER, Thomas BODNER, Joerg SIEGERT
  • Publication number: 20200350447
    Abstract: The near-infrared photodetector semiconductor device comprises a semiconductor layer (1) of a first type of conductivity with a main surface (10), a trench or a plurality of trenches (2) in the semiconductor layer at the main surface, a SiGe alloy layer (3) in the trench or the plurality of trenches, and an electrically conductive filling material of a second type of conductivity in the trench or the plurality of trenches, the second type of conductivity being opposite to the first type of conductivity.
    Type: Application
    Filed: November 13, 2018
    Publication date: November 5, 2020
    Inventors: Ingrid Jonak-Auer, Gerald Meinhardt, Bernhard Löffler
  • Patent number: 10468541
    Abstract: A dielectric layer (2) is arranged on the main surface (10) of a semiconductor substrate (1), and a passivation layer (6) is arranged on the dielectric layer. A metal layer (3) is embedded in the dielectric layer above an opening (12) in the substrate, and a metallization (14) is arranged in the opening. The metallization contacts the metal layer and forms a through-substrate via to a rear surface (11) of the substrate. A layer or layer sequence (7, 8, 9) comprising at least one further layer is arranged on the passivation layer above the opening. In this way the bottom of the through-substrate via is stabilized. A plug (17) may additionally be arranged in the opening without filling the opening.
    Type: Grant
    Filed: December 12, 2014
    Date of Patent: November 5, 2019
    Assignee: ams AG
    Inventors: Franz Schrank, Sara Carniello, Hubert Enichlmair, Jochen Kraft, Bernhard Loeffler, Rainer Holzhaider
  • Patent number: 10062610
    Abstract: An opening (17) is etched from a main surface (10) of a substrate (1) of semiconductor material by deep reactive ion etching comprising a plurality of cycles, each of the cycles including a deposition of a passivation in the opening and an application of an etchant. An additional etching is performed between two consecutive cycles by an application of a further etchant that is different from the etchant. The passivation layer (9) is thus etched above a sidewall (7) of the opening to remove undesired protrusions.
    Type: Grant
    Filed: October 15, 2015
    Date of Patent: August 28, 2018
    Assignee: ams AG
    Inventors: Guenther Koppitsch, Bernhard Loeffler
  • Publication number: 20170316976
    Abstract: An opening (17) is etched from a main surface (10) of a substrate (1) of semiconductor material by deep reactive ion etching comprising a plurality of cycles, each of the cycles including a deposition of a passivation in the opening and an application of an etchant. An additional etching is performed between two consecutive cycles by an application of a further etchant that is different from the etchant. The passivation layer (9) is thus etched above a sidewall (7) of the opening to remove undesired protrusions.
    Type: Application
    Filed: October 15, 2015
    Publication date: November 2, 2017
    Inventors: Guenther KOPPITSCH, Bernhard LOEFFLER
  • Publication number: 20160322519
    Abstract: A dielectric layer (2) is arranged on the main surface (10) of a semiconductor substrate (1), and a passivation layer (6) is arranged on the dielectric layer. A metal layer (3) is embedded in the dielectric layer above an opening (12) in the substrate, and a metallization (14) is arranged in the opening. The metallization contacts the metal layer and forms a through-substrate via to a rear surface (11) of the substrate. A layer or layer sequence (7, 8, 9) comprising at least one further layer is arranged on the passivation layer above the opening. In this way the bottom of the through-substrate via is stabilized. A plug (17) may additionally be arranged in the opening without filling the opening.
    Type: Application
    Filed: December 12, 2014
    Publication date: November 3, 2016
    Inventors: Franz SCHRANK, Sara CARNIELLO, Hubert ENICHLMAIR, Jochen KRAFT, Bernhard LOEFFLER, Rainer HOLZHAIDER
  • Patent number: 9105645
    Abstract: A semiconductor substrate (1) is provided with a structure (3) on an upper side (2), and an additional substrate (4) provided for handling the semiconductor substrate is likewise structured on an upper side (5). The structuring of the additional substrate takes place in at least partial correspondence with the structure of the semiconductor substrate. The structured upper sides of the semiconductor substrate and the additional substrate are positioned such that they face one another and are permanently connected to one another. Subsequently, the semiconductor substrate is thinned from the rear side (6), and the additional substrate is removed at least to such a degree that the structure of the semiconductor substrate is exposed to the extent required for the further use.
    Type: Grant
    Filed: September 18, 2012
    Date of Patent: August 11, 2015
    Assignee: ams AG
    Inventors: Bernhard Stering, Jörg Siegert, Bernhard Löffler
  • Publication number: 20140349462
    Abstract: A semiconductor substrate (1) is provided with a structure (3) on an upper side (2), and an additional substrate (4) provided for handling the semiconductor substrate is likewise structured on an upper side (5). The structuring of the additional substrate takes place in at least partial correspondence with the structure of the semiconductor substrate. The structured upper sides of the semiconductor substrate and the additional substrate are positioned such that they face one another and are permanently connected to one another. Subsequently, the semiconductor substrate is thinned from the rear side (6), and the additional substrate is removed at least to such a degree that the structure of the semiconductor substrate is exposed to the extent required for the further use.
    Type: Application
    Filed: September 18, 2012
    Publication date: November 27, 2014
    Applicant: ams AG
    Inventors: Bernhard Stering, Jörg Siegert, Bernhard Löffler
  • Patent number: 8884442
    Abstract: Through the intermetal dielectric (2) and the semiconductor material of the substrate (1) a contact hole is formed, and a contact area of a connection metal plane (3) that faces the substrate is exposed in the contact hole. A metallization (11) is applied, which forms a connection contact (12) on the contact area, a through-contact (13) in the contact hole and a connection contact (20) on a contact area facing away from the substrate and/or on a vertical conductive connection (15) of the upper metal plane (24).
    Type: Grant
    Filed: August 9, 2011
    Date of Patent: November 11, 2014
    Assignee: ams AG
    Inventors: Jochen Kraft, Stefan Jessenig, Günther Koppitsch, Franz Schrank, Jordi Teva, Bernhard Löffler, Jörg Siegert
  • Publication number: 20130221539
    Abstract: Through the intermetal dielectric (2) and the semiconductor material of the substrate (1) a contact hole is formed, and a contact area of a connection metal plane (3) that faces the substrate is exposed in the contact hole. A metallization (11) is applied, which forms a connection contact (12) on the contact area, a through-contact (13) in the contact hole and a connection contact (20) on a contact area facing away from the substrate and/or on a vertical conductive connection (15) of the upper metal plane (24).
    Type: Application
    Filed: August 9, 2011
    Publication date: August 29, 2013
    Applicant: ams AG
    Inventors: Jochen Kraft, Stefan Jessenig, Günther Koppitsch, Franz Schrank, Jordi Teva, Bernhard Löffler, Jörg Siegert
  • Patent number: 8227882
    Abstract: A light-sensitive component which has a semiconductor junction between a thin relatively highly doped epitaxial layer and a relatively lightly doped semiconductor substrate. Outside a light incidence window, an insulating layer is arranged between epitaxial layer and semiconductor substrate. In this case, the thickness of the epitaxial layer is less than 50 nm, with the result that a large proportion of the light quanta incident in the light incidence window can be absorbed in the lightly doped semiconductor substrate.
    Type: Grant
    Filed: January 31, 2006
    Date of Patent: July 24, 2012
    Assignee: austriamicrosystems AG
    Inventors: Hubert Enichlmair, Jochen Kraft, Bernhard Löffler, Gerald Meinhardt, Georg Röhrer, Ewald Wachmann
  • Patent number: 8134179
    Abstract: A photodiode in which a pn junction is formed between the doped region (DG) formed in the surface of a crystalline semiconductor substrate and a semiconductor layer (HS) deposited above said doped region. An additional doping (GD) is provided in the edge region of the doped zone, by means of which additional doping the pn junction is shifted deeper into the substrate (SU). With the greater distance of the pn junction from defects at phase boundaries that is achieved in this way, the dark current within the photodiode is reduced.
    Type: Grant
    Filed: April 28, 2006
    Date of Patent: March 13, 2012
    Assignee: austriamicrosystems AG
    Inventors: Jochen Kraft, Bernhard Löffler, Gerald Meinhardt
  • Patent number: 8063458
    Abstract: A micromechanical component that can be produced in an integrated thin-film method is disclosed, which component can be produced and patterned on the surface of a substrate as multilayer construction. At least two metal layers that are separated from the substrate and with respect to one another by interlayers are provided for the multilayer construction. Electrically conductive connecting structures provide for an electrical contact of the metal layers among one another and with a circuit arrangement arranged in the substrate. The freely vibrating membrane that can be used for an inertia sensor, a microphone or an electrostatic switch can be provided with matching and passivation layers on all surfaces in order to improve its mechanical properties, said layers being concomitantly deposited and patterned during the layer producing process or during the construction of the multilayer construction. Titanium nitride layers are advantageously used for this.
    Type: Grant
    Filed: March 28, 2006
    Date of Patent: November 22, 2011
    Assignee: austriamicrosystems AG
    Inventors: Bernhard Loeffler, Franz Schrank
  • Publication number: 20110117714
    Abstract: A method of forming an isolation region is provided that in one embodiment substantially reduces divot formation. In one embodiment, the method includes providing a semiconductor substrate, forming a first pad dielectric layer on an upper surface of the semiconductor substrate and forming a trench through the first pad dielectric layer into the semiconductor substrate. In a following process sequence, the first pad dielectric layer is laterally etched to expose an upper surface of the semiconductor substrate that is adjacent the trench, and the trench is filled with a trench dielectric material, wherein the trench dielectric material extends atop the upper surface of the semiconductor substrate adjacent the trench and abuts the pad dielectric layer.
    Type: Application
    Filed: November 19, 2009
    Publication date: May 19, 2011
    Inventors: Max Levy, Natalie Feilchenfeld, Richard Phelps, BethAnn Rainey, James Slinkman, Steven H. Voldman, Michael Zierak, Hubert Enichlmair, Martin Knaipp, Bernhard Loeffler, Rainer Minixhofer, Jong-Mun Park, Georg Roehrer
  • Patent number: 7888234
    Abstract: A method for manufacturing a semiconductor body with a trench comprises the steps of etching the trench (11) in the semiconductor body (10) and forming a silicon oxide layer (12) on at least one side wall (14) of the trench (11) and on the bottom (15) of the trench (11) by means of thermal oxidation. Furthermore, the silicon oxide layer (12) on the bottom (15) of the trench (11) is removed and the trench (11) is filled with polysilicon that forms a polysilicon body (13).
    Type: Grant
    Filed: April 17, 2008
    Date of Patent: February 15, 2011
    Assignee: austriamicrosystems AG
    Inventors: Martin Knaipp, Bernhard Löffler
  • Publication number: 20100038678
    Abstract: A photodiode in which a pn junction is formed between the doped region (DG) formed in the surface of a crystalline semiconductor substrate and a semiconductor layer (HS) deposited above said doped region. An additional doping (GD) is provided in the edge region of the doped zone, by means of which additional doping the pn junction is shifted deeper into the substrate (SU). With the greater distance of the pn junction from defects at phase boundaries that is achieved in this way, the dark current within the photodiode is reduced.
    Type: Application
    Filed: April 28, 2006
    Publication date: February 18, 2010
    Inventors: Jochen Kraft, Bernhard Löffler, Gerald Meinhardt
  • Patent number: 7629628
    Abstract: A transistor includes an emitter, a collector, and a base layer having a base contact. The base layer includes an intrinsic region between the emitter and the collector, an extrinsic region between the intrinsic region and the base contact, and a first doping layer that is doped with a trivalent substance, that extends into the extrinsic region, and that is counter-doped with a pentavalent substance in a region adjacent to the emitter.
    Type: Grant
    Filed: December 20, 2002
    Date of Patent: December 8, 2009
    Assignee: Austriamicrosystems AG
    Inventors: Jochen Kraft, Bernhard Loeffler, Georg Roehrer