Patents by Inventor Bert Jongbloed

Bert Jongbloed has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9916980
    Abstract: A method of forming a layer on a substrate is provided by providing the substrate with a hardmask material. The hardmask material is infiltrated with infiltration material during N infiltration cycles by: a) providing a first precursor to the hardmask material on the substrate in the reaction chamber for a first period T1; b) removing a portion of the first precursor for a second period T2; and, c) providing a second precursor to the hardmask material on the substrate for a third period T3, allowing the first and second precursor to react with each other forming the infiltration material.
    Type: Grant
    Filed: December 15, 2016
    Date of Patent: March 13, 2018
    Assignee: ASM IP Holding B.V.
    Inventors: Werner Knaepen, Jan Willem Maes, Bert Jongbloed, Krzysztof Kamil Kachel, Dieter Pierreux, David Kurt De Roest
  • Patent number: 9887082
    Abstract: There is provided a method of filling one or more gaps by providing the substrate in a reaction chamber and introducing a first reactant to the substrate with a first dose, thereby forming no more than about one monolayer by the first reactant on a first area; introducing a second reactant to the substrate with a second dose, thereby forming no more than about one monolayer by the second reactant on a second area of the surface, wherein the first and the second areas overlap in an overlap area where the first and second reactants react and leave an initially unreacted area where the first and the second areas do not overlap; and, introducing a third reactant to the substrate with a third dose, the third reactant reacting with the first or second reactant remaining on the initially unreacted area.
    Type: Grant
    Filed: July 28, 2016
    Date of Patent: February 6, 2018
    Assignee: ASM IP Holding B.V.
    Inventors: Viljami Pore, Werner Knaepen, Bert Jongbloed, Dieter Pierreux, Gido Van Der Star, Toshiya Suzuki
  • Publication number: 20180033606
    Abstract: There is provided a method of filling one or more gaps by providing the substrate in a reaction chamber and introducing a first reactant to the substrate with a first dose, thereby forming no more than about one monolayer by the first reactant on a first area; introducing a second reactant to the substrate with a second dose, thereby forming no more than about one monolayer by the second reactant on a second area of the surface, wherein the first and the second areas overlap in an overlap area where the first and second reactants react and leave an initially unreacted area where the first and the second areas do not overlap; and, introducing a third reactant to the substrate with a third dose, the third reactant reacting with the first or second reactant remaining on the initially unreacted area.
    Type: Application
    Filed: July 28, 2016
    Publication date: February 1, 2018
    Inventors: Viljami Pore, Werner Knaepen, Bert Jongbloed, Dieter Pierreux, Gido Van Der Star, Toshiya Suzuki
  • Patent number: 9837281
    Abstract: A process for depositing doped aluminum nitride (doped AlN) is disclosed. The process comprises subjecting a substrate to temporally separated exposures to an aluminum precursor and a nitrogen precursor to form an aluminum and nitrogen-containing compound on the substrate. The aluminum and nitrogen-containing compound is subsequently exposed to a dopant precursor to form doped AlN. The temporally separated exposures to an aluminum precursor and a nitrogen precursor, and the subsequent exposure to a dopant precursor together constitute a doped AlN deposition cycle. A plurality of doped AlN deposition cycles may be performed to deposit a doped AlN film of a desired thickness. The dopant content of the doped AlN can be tuned by performing a particular ratio of 1) separated exposures to an aluminum precursor and a nitrogen precursor, to 2) subsequent exposures to the dopant. The deposition may be performed in a batch process chamber, which may accommodate batches of 25 or more substrates.
    Type: Grant
    Filed: May 25, 2016
    Date of Patent: December 5, 2017
    Assignee: ASM IP HOLDING B.V.
    Inventors: Bert Jongbloed, Dieter Pierreux, Werner Knaepen
  • Patent number: 9812320
    Abstract: According to the invention there is provided a method of filling one or more gaps created during manufacturing of a feature on a substrate by providing a deposition method comprising; introducing a first reactant to the substrate with a first dose, thereby forming no more than about one monolayer by the first reactant; introducing a second reactant to the substrate with a second dose. The first reactant is introduced with a subsaturating first dose reaching only a top area of the surface of the one or more gaps and the second reactant is introduced with a saturating second dose reaching a bottom area of the surface of the one or more gaps. A third reactant may be provided to the substrate in the reaction chamber with a third dose, the third reactant reacting with at least one of the first and second reactant.
    Type: Grant
    Filed: July 28, 2016
    Date of Patent: November 7, 2017
    Assignee: ASM IP Holding B.V.
    Inventors: Viljami Pore, Werner Knaepen, Bert Jongbloed, Dieter Pierreux, Steven R. A. Van Aerde, Suvi Haukka, Atsuki Fukuzawa, Hideaki Fukuda
  • Patent number: 9799509
    Abstract: A process for depositing aluminum oxynitride (AlON) is disclosed. The process comprises subjecting a substrate to temporally separated exposures to an aluminum precursor and a nitrogen precursor to form an aluminum and nitrogen-containing compound on the substrate. The aluminum and nitrogen-containing compound is subsequently exposed to an oxygen precursor to form AlON. The temporally separated exposures to an aluminum precursor and a nitrogen precursor, and the subsequent exposure to an oxygen precursor together constitute an AlON deposition cycle. A plurality of AlON deposition cycles may be performed to deposit an AlON film of a desired thickness. The deposition may be performed in a batch process chamber, which may accommodate batches of 25 or more substrates. The deposition may be performed without exposure to plasma.
    Type: Grant
    Filed: November 26, 2014
    Date of Patent: October 24, 2017
    Assignee: ASM IP HOLDING B.V.
    Inventors: Bert Jongbloed, Dieter Pierreux, Werner Knaepen
  • Publication number: 20170213732
    Abstract: An etch stop layer comprises a metal oxide comprising a metal selected from the group consisting of metals of Group 4 of the periodic table, metals of Group 5 of the periodic table, metals of Group 6 of the periodic table, and yttrium. The metal oxide forms exceptionally thin layers that are resiatant to ashing and HF exposure. Subjecting the etch stop layer to both ashing and HF etch processes removes less than 0.3 nm of the thickness of the etch stop layer, and more preferably less than 0.25 nm. The etch stop layer may be thin and may have a thickness of about 0.5-2 nm. In some embodiments, the etch stop layer comprises tantalum oxide (TaO).
    Type: Application
    Filed: January 24, 2017
    Publication date: July 27, 2017
    Inventors: Dieter Pierreux, Werner Knaepen, Bert Jongbloed
  • Patent number: 9711351
    Abstract: In some embodiments, a nitride film is provided over a semiconductor substrate and densified. The nitride film may be a flowable nitride, which may be deposited to at least partially fill openings in the substrate. Densifying the film is accomplished without exposing the nitride film to plasma by exposing the nitride film to a non-plasma densifying agent in the process chamber. The non-plasma densifying agent may be a nitriding gas, a hydrogen scavenging gas, a silicon precursor, or a combination thereof.
    Type: Grant
    Filed: August 19, 2015
    Date of Patent: July 18, 2017
    Assignee: ASM IP HOLDING B.V.
    Inventors: Bert Jongbloed, Dieter Pierreux
  • Patent number: 9576790
    Abstract: Methods of depositing boron and carbon containing films are provided. In some embodiments, methods of depositing B, C films with desirable properties, such as conformality and etch rate, are provided. One or more boron and/or carbon containing precursors can be decomposed on a substrate at a temperature of less than about 400° C. One or more of the boron and carbon containing films can have a thickness of less than about 30 angstroms. Methods of doping a semiconductor substrate are provided. Doping a semiconductor substrate can include depositing a boron and carbon film over the semiconductor substrate by exposing the substrate to a vapor phase boron precursor at a process temperature of about 300° C. to about 450° C., where the boron precursor includes boron, carbon and hydrogen, and annealing the boron and carbon film at a temperature of about 800° C. to about 1200° C.
    Type: Grant
    Filed: April 14, 2015
    Date of Patent: February 21, 2017
    Assignee: ASM IP HOLDING B.V.
    Inventors: Viljami J. Pore, Yosuke Kimura, Kunitoshi Namba, Wataru Adachi, Hideaki Fukuda, Werner Knaepen, Dieter Pierreux, Bert Jongbloed
  • Publication number: 20170029948
    Abstract: In accordance with some embodiments herein, methods and apparatuses for deposition of thin films are provided. In some embodiments, a plurality of stations is provided, in which each station provides a different reactant or combination of reactants. The stations can be in gas isolation from each other, and the substrate can be contacted with different reactants at different temperatures so as to minimize or prevent undesired gas phase reactions, chemical vapor deposition (CVD) and/or atomic layer deposition (ALD) reactions between the different reactants or combinations of reactants.
    Type: Application
    Filed: July 28, 2015
    Publication date: February 2, 2017
    Inventors: Bert Jongbloed, Delphine Longrie, Robin Roelofs, Lucian Jdira, Suvi Juhani Haukka, Antti Niskanen, Jun Kawahara, Yukihiro Mori
  • Patent number: 9552979
    Abstract: A process for depositing aluminum nitride is disclosed. The process comprises providing a plurality of semiconductor substrates in a batch process chamber and depositing an aluminum nitride layer on the substrates by performing a plurality of deposition cycles without exposing the substrates to plasma during the deposition cycles. Each deposition cycle comprises flowing an aluminum precursor pulse into the batch process chamber, removing the aluminum precursor from the batch process chamber, and removing the nitrogen precursor from the batch process chamber after flowing the nitrogen precursor and before flowing another pulse of the aluminum precursor. The process chamber may be a hot wall process chamber and the deposition may occur at a deposition pressure of less than 1 Torr.
    Type: Grant
    Filed: May 31, 2013
    Date of Patent: January 24, 2017
    Assignee: ASM IP HOLDING B.V.
    Inventors: Werner Knaepen, Bert Jongbloed, Dieter Pierreux, Peter Zagwijn, Hessel Sprey, Cornelius A. van der Jeugd, Marinus Josephus de Blank, Robin Roelofs, Qi Xie, Jan Willem Maes
  • Publication number: 20170011910
    Abstract: In some embodiments, a reactive curing process may be performed by exposing a semiconductor substrate in a process chamber to an ambient containing hydrogen peroxide, with the pressure in the process chamber at about 300 Torr or less. In some embodiments, the residence time of hydrogen peroxide molecules in the process chamber is about five minutes or less. The curing process temperature may be set at about 500° C. or less. The curing process may be applied to cure flowable dielectric materials and may provide highly uniform curing results, such as across a batch of semiconductor substrates cured in a batch process chamber.
    Type: Application
    Filed: August 18, 2016
    Publication date: January 12, 2017
    Inventors: Bert Jongbloed, Dieter Pierreux, Cornelius A. van der Jeugd, Herbert Terhorst, Lucian Jdira, Radko G. Bankras, Theodorus G.M. Oosterlaken
  • Publication number: 20160307766
    Abstract: A process for depositing doped aluminum nitride (doped AlN) is disclosed. The process comprises subjecting a substrate to temporally separated exposures to an aluminum precursor and a nitrogen precursor to form an aluminum and nitrogen-containing compound on the substrate. The aluminum and nitrogen-containing compound is subsequently exposed to a dopant precursor to form doped AlN. The temporally separated exposures to an aluminum precursor and a nitrogen precursor, and the subsequent exposure to a dopant precursor together constitute a doped AlN deposition cycle. A plurality of doped AlN deposition cycles may be performed to deposit a doped AlN film of a desired thickness. The dopant content of the doped AlN can be tuned by performing a particular ratio of 1) separated exposures to an aluminum precursor and a nitrogen precursor, to 2) subsequent exposures to the dopant. The deposition may be performed in a batch process chamber, which may accommodate batches of 25 or more substrates.
    Type: Application
    Filed: May 25, 2016
    Publication date: October 20, 2016
    Inventors: Bert Jongbloed, Dieter Pierreux, Werner Knaepen
  • Publication number: 20160273105
    Abstract: An atomic layer deposition apparatus including a deposition head that is rotatably mounted around a central deposition head axis and including a susceptor having an upper surface for carrying substrates. The lower surface comprises a plurality of process sections. Each process section includes a purge gas injection zone, a first precursor gas injection zone, a gas exhaust zone, a purge gas injection zone, a second precursor gas injection zone and a gas exhaust zone. Each zone radially extends from a radially inward part of the lower surface to a radially outward part of the lower surface of the deposition head. The combination of distance between the lower surface and the upper surface, the rotational speed of the deposition head and the flow rate and the pressure of the purge gas flows are selected such that the first and second precursor gases are substantially prevented from mixing.
    Type: Application
    Filed: March 17, 2015
    Publication date: September 22, 2016
    Inventors: Chris G. M. de Ridder, Lucian C. Jdira, Bert Jongbloed, Jeroen A. Smeltink
  • Patent number: 9431238
    Abstract: In some embodiments, a reactive curing process may be performed by exposing a semiconductor substrate in a process chamber to an ambient containing hydrogen peroxide, with the pressure in the process chamber at about 300 Torr or less. In some embodiments, the residence time of hydrogen peroxide molecules in the process chamber is about five minutes or less. The curing process temperature may be set at about 500° C. or less. The curing process may be applied to cure flowable dielectric materials and may provide highly uniform curing results, such as across a batch of semiconductor substrates cured in a batch process chamber.
    Type: Grant
    Filed: May 21, 2015
    Date of Patent: August 30, 2016
    Assignee: ASM IP HOLDING B.V.
    Inventors: Bert Jongbloed, Dieter Pierreux, Cornelius A. van der Jeugd, Herbert Terhorst, Lucian Jdira, Radko G. Bankras, Theodorus G. M. Oosterlaken
  • Publication number: 20160240373
    Abstract: In some embodiments, an oxide layer is grown on a semiconductor substrate by oxidizing the semiconductor substrate by exposure to hydrogen peroxide at a process temperature of about 500° C. or less. The exposure to the hydrogen peroxide may continue until the oxide layer grows by a thickness of about 1 ? or more. Where the substrate is a germanium substrate, while oxidation using H2O has been found to form germanium oxide with densities of about 4.25 g/cm3, oxidation according to some embodiments can form an oxide layer with a density of about 6 g/cm3 or more (for example, about 6.27 g/cm3). In some embodiments, another layer of material is deposited directly on the oxide layer. For example, a dielectric layer may be deposited directly on the oxide layer.
    Type: Application
    Filed: February 12, 2015
    Publication date: August 18, 2016
    Inventors: Fu Tang, Michael Givens, Qi Xie, Jan Willem Maes, Bert Jongbloed, Radko G. Bankras, Theodorus G.M. Oosterlaken, Dieter Pierreux, Werner Knaepen, Harald B. Profijt, Cornelius A. van der Jeugd
  • Publication number: 20160148805
    Abstract: A process for depositing aluminum oxynitride (AlON) is disclosed. The process comprises subjecting a substrate to temporally separated exposures to an aluminum precursor and a nitrogen precursor to form an aluminum and nitrogen-containing compound on the substrate. The aluminum and nitrogen-containing compound is subsequently exposed to an oxygen precursor to form AlON. The temporally separated exposures to an aluminum precursor and a nitrogen precursor, and the subsequent exposure to an oxygen precursor together constitute an AlON deposition cycle. A plurality of AlON deposition cycles may be performed to deposit an AlON film of a desired thickness. The deposition may be performed in a batch process chamber, which may accommodate batches of 25 or more substrates. The deposition may be performed without exposure to plasma.
    Type: Application
    Filed: November 26, 2014
    Publication date: May 26, 2016
    Inventors: Bert Jongbloed, Dieter Pierreux, Werner Knaepen
  • Publication number: 20160079058
    Abstract: In some embodiments, a nitride film is provided over a semiconductor substrate and densified. The nitride film may be a flowable nitride, which may be deposited to at least partially fill openings in the substrate. Densifying the film is accomplished without exposing the nitride film to plasma by exposing the nitride film to a non-plasma densifying agent in the process chamber. The non-plasma densifying agent may be a nitriding gas, a hydrogen scavenging gas, a silicon precursor, or a combination thereof.
    Type: Application
    Filed: August 19, 2015
    Publication date: March 17, 2016
    Inventors: Bert JONGBLOED, Dieter PIERREUX
  • Publication number: 20150357184
    Abstract: In some embodiments, a reactive curing process may be performed by exposing a semiconductor substrate in a process chamber to an ambient containing hydrogen peroxide, with the pressure in the process chamber at about 300 Torr or less. In some embodiments, the residence time of hydrogen peroxide molecules in the process chamber is about five minutes or less. The curing process temperature may be set at about 500° C. or less. The curing process may be applied to cure flowable dielectric materials and may provide highly uniform curing results, such as across a batch of semiconductor substrates cured in a batch process chamber.
    Type: Application
    Filed: May 21, 2015
    Publication date: December 10, 2015
    Inventors: Bert Jongbloed, Dieter Pierreux, Cornelius A. van der Jeugd, Herbert Terhorst, Lucian Jdira, Radko G. Bankras, Theodorus G.M. Oosterlaken
  • Publication number: 20150303079
    Abstract: A vertical furnace processing system for processing semiconductor substrates, comprising the following modules:—a processing module including a vertical furnace; an I/O-station module including at least one load port to which a substrate cassette is dockable; a wafer handling module configured to transfer semiconductor substrates between the processing module and a substrate cassette docked to the load port of the I/O-station module; and a gas supply module including at least one gas supply or gas supply connection for providing the vertical furnace of the processing module with process gas, wherein at least two of the said modules are mutually decouplably coupled, such that said at least two modules are decouplable from one another to facilitate servicing of the system, and in particular the vertical furnace thereof.
    Type: Application
    Filed: December 3, 2013
    Publication date: October 22, 2015
    Applicant: ASM IP HOLDING B.V.
    Inventors: Theodorus G. M. Oosterlaken, Chris G. M. de Ridder, Bert Jongbloed