Patents by Inventor Bhaskar Jyoti Bhuyan

Bhaskar Jyoti Bhuyan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11972940
    Abstract: Methods of selectively depositing a carbon-containing layer are described. Exemplary processing methods may include flowing a first precursor over a substrate comprising a metal surface and a non-metal surface to form a first portion of an initial carbon-containing film on the metal surface. The methods may include removing a first precursor effluent from the substrate. A second precursor may then be flowed over the substrate to react with the first portion of the initial carbon-containing layer. The methods may include removing a second precursor effluent from the substrate. The methods may include pre-treating the metal surface of the substrate to form a metal oxide surface on the metal surface.
    Type: Grant
    Filed: April 18, 2022
    Date of Patent: April 30, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Xinke Wang, Bhaskar Jyoti Bhuyan, Zeqing Shen, Susmit Singha Roy, Abhijit Basu Mallick, Jiecong Tang, John Sudijono, Mark Saly
  • Patent number: 11970777
    Abstract: Methods for atomic layer deposition (ALD) or plasma enhanced atomic layer deposition (PEALD) of low-K films are described. A method of depositing a film comprises exposing a substrate to a silicon precursor having the general formulae (Ia), (Ib), (Ic), (Id), (IX), or (X); and exposing the substrate to an oxidant to react with the silicon-containing film to form one or more of a silicon oxycarbide (SiOC) film or a silicon oxycarbonitride (SiOCN) film on the substrate, the oxidant comprising one or more of a carboxylic acid, an aldehyde, a ketone, an ethenediol, an oxalic acid, a glyoxylic acid, a peroxide, an alcohol, and a glyoxal.
    Type: Grant
    Filed: June 24, 2022
    Date of Patent: April 30, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Shuaidi Zhang, Ning Li, Mihaela A. Balseanu, Bhaskar Jyoti Bhuyan, Mark Saly, Thomas Knisley
  • Publication number: 20240087880
    Abstract: Embodiments include semiconductor processing methods to form low-? films on semiconductor substrates are described. The processing methods may include flowing one or more deposition precursors to a semiconductor processing system. The one or more deposition precursors may include a silicon-containing precursor that may be a cyclic compound. The methods may include generating a deposition plasma from the one or more deposition precursors. The methods may include depositing a silicon-and-carbon-containing material on the substrate from plasma effluents of the deposition plasma. The silicon-and-carbon-containing material as-deposited may be characterized by a dielectric constant less than or about 3.0.
    Type: Application
    Filed: August 26, 2022
    Publication date: March 14, 2024
    Applicant: Applied Materials, Inc.
    Inventors: Shruba Gangopadhyay, Bhaskar Jyoti Bhuyan, Michael Haverty, Bo Xie, Li-Qun Xia, Rui Lu, Yijun Liu, Ruitong Xiong, Xiaobo Li, Lakmal C. Kalutarage, Lauren Bagby
  • Publication number: 20240052487
    Abstract: Methods of depositing a film selectively onto a first substrate surface relative to a second substrate surface are described. The methods include exposing the substrate surfaces to a blocking compound to selectively form a blocking layer on at least a portion of the first surface over the second surface. The substrate is sequentially exposed to a metal precursor with a kinetic diameter in excess of 21 angstroms and a reactant to selectively form a metal-containing layer on the second surface over the blocking layer or the first surface. The relatively larger metal precursors of some embodiments allow for the use of blocking layers with gaps or voids without the loss of selectivity.
    Type: Application
    Filed: October 17, 2023
    Publication date: February 15, 2024
    Applicant: Applied Materials, Inc.
    Inventors: Bhaskar Jyoti Bhuyan, Mark Saly, David Thompson, Tobin Kaufman-Osborn, Kurt Fredrickson, Thomas Knisley, Liqi Wu
  • Publication number: 20240055255
    Abstract: Methods of selectively depositing a carbon-containing layer are described. Exemplary processing methods may include treating a substrate comprising a carbon-containing surface and a silicon-containing surface with one or more of ozone or hydrogen peroxide to passivate the silicon-containing surface. In one or more embodiments, a carbon-containing layer is then selectively deposited on the carbon-containing surface and not on the silicon-containing surface by flowing a first precursor over the substrate to form a first portion of an initial carbon-containing film on the carbon-containing surface and not on the silicon-containing surface. The methods may include removing a first precursor effluent from the substrate. A second precursor may then be flowed over the substrate to react with the first portion of the initial carbon-containing layer. The methods may include removing a second precursor effluent from the substrate.
    Type: Application
    Filed: August 4, 2022
    Publication date: February 15, 2024
    Applicant: Applied Materials, Inc.
    Inventors: Zeqing Shen, Xinke Wang, Susmit Singha Roy, Abhijit Basu Mallick, Bhaskar Jyoti Bhuyan, John Sudijono
  • Publication number: 20240047193
    Abstract: Methods of forming SiCON films comprising sequential exposure to a silicon precursor and a mixture of alkanolamine and amine reactants and an optional plasma are described. Methods of forming a silicon-containing film comprising sequential exposure to a silicon precursor and an epoxide with an optional plasma exposure are also described.
    Type: Application
    Filed: October 11, 2023
    Publication date: February 8, 2024
    Applicant: Applied Materials, Inc.
    Inventors: Mark Saly, David Thompson, Thomas Knisley, Bhaskar Jyoti Bhuyan
  • Patent number: 11886120
    Abstract: Embodiments disclosed herein include methods of depositing a metal oxo photoresist using dry deposition processes. In an embodiment, the method comprises forming a first metal oxo film on the substrate with a first vapor phase process including a first metal precursor vapor and a first oxidant vapor, and forming a second metal oxo film over the first metal oxo film with a second vapor phase process including a second metal precursor vapor and a second oxidant vapor.
    Type: Grant
    Filed: June 23, 2021
    Date of Patent: January 30, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Lakmal Charidu Kalutarage, Mark Joseph Saly, Bhaskar Jyoti Bhuyan, Thomas Joseph Knisley, Kelvin Chan, Regina Germanie Freed, David Michael Thompson, Susmit Singha Roy, Madhur Sachan
  • Publication number: 20240027912
    Abstract: Methods of depositing a conformal carbon-containing film on an EUV photoresist to reduce line edge roughness (LER) are described. Exemplary processing methods may include flowing a first precursor over a patterned EUV surface to form a first portion of an initial carbon-containing film on the structure. The methods may include removing a first precursor effluent from the patterned EUV photoresist. A second precursor may then be flowed over the patterned EUV photoresist to react with the first portion of the initial carbon-containing film. The methods may include removing a second precursor effluent from the patterned EUV photoresist. The methods may include etching the substrate to remove a portion of the carbon-containing film and expose a top surface of the patterned surface and expose the substrate between the patterned surfaces.
    Type: Application
    Filed: July 25, 2022
    Publication date: January 25, 2024
    Applicant: Applied Materials, Inc.
    Inventors: Xinke Wang, Zeqing Shen, Susmit Singha Roy, Abhijit Basu Mallick, Bhaskar Jyoti Bhuyan, Jiecong Tang, John Sudijono, Mark Saly
  • Publication number: 20240026527
    Abstract: A method of forming a high aspect ratio structure within a 3D NAND structure is provided. The method includes delivering a precursor to a high aspect ratio opening disposed within a multilayer stack having two or more alternating layers. The precursor is selected from the group consisting of a diaminosilane, an aminosilane, and a combination thereof. The method includes delivering an oxygen-containing compound to the high aspect ratio opening. The precursor and the oxygen-containing compound are alternated cyclically to fill the high aspect ratio opening.
    Type: Application
    Filed: July 20, 2023
    Publication date: January 25, 2024
    Applicant: Applied Materials, Inc.
    Inventors: Geetika BAJAJ, Supriya GHOSH, Susmit Singha ROY, Darshan THAKARE, Gopi Chandran RAMACHANDRAN, Bhaskar Jyoti BHUYAN, Abhijit B. MALLICK
  • Patent number: 11859278
    Abstract: Methods of forming carbon polymer films are disclosed. Some methods are advantageously performed at lower temperatures. The substrate is exposed to a first carbon precursor to form a substrate surface with terminations based on the reactive functional groups of the first carbon precursor and exposed to a second carbon precursor to react with the surface terminations and form a carbon polymer film. Processing tools and non-transitory memories to perform the process are also disclosed.
    Type: Grant
    Filed: March 12, 2020
    Date of Patent: January 2, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Bhaskar Jyoti Bhuyan, Mark Saly, Ahbijit Basu Mallick, Eugene Yu Jin Kong, Bo Qi
  • Publication number: 20230420259
    Abstract: Described herein is a method for selectively cleaning and/or etching a sample. The method includes selectively forming a film in a trench of a substrate such that the trench may be selectively etched. A polymer film is deposited on the bottom surface of the trench without being deposited on the side wall. A second film is selectively formed in the trench without forming the second film on the polymer film. The polymer is then removed from the bottom surface of the trench and then etching is performed on the bottom surface of the trench using an etch chemistry, wherein the second film protects the side wall from being etched.
    Type: Application
    Filed: June 9, 2022
    Publication date: December 28, 2023
    Inventors: David Thompson, Bhaskar Jyoti Bhuyan, Mark Saly, Lisa Enman, Aaron Dangerfield, Jesus Candelario Mendoza, Jeffrey W. Anthis, Lakmal Kalutarage
  • Patent number: 11848229
    Abstract: Methods for selectively depositing on metallic surfaces are disclosed. Some embodiments of the disclosure utilize a hydrocarbon having at least two functional groups, at least one functional group selected from amino groups, hydroxyl groups, ether linkages or combinations thereof to form a self-assembled monolayer (SAM) on metallic surfaces.
    Type: Grant
    Filed: October 21, 2022
    Date of Patent: December 19, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Michael L. McSwiney, Bhaskar Jyoti Bhuyan, Mark Saly, Drew Phillips, Aaron Dangerfield, David Thompson, Kevin Kashefi, Xiangjin Xie
  • Publication number: 20230402285
    Abstract: Methods of depositing a conformal carbon-containing spacer layer are described. Exemplary processing methods may include flowing a first precursor over a patterned surface and a substrate to form a first portion of an initial carbon-containing film on the structure. The methods may include removing a first precursor effluent from the substrate. A second precursor may then be flowed over the substrate to react with the first portion of the initial carbon-containing film. The methods may include removing a second precursor effluent from the substrate. The methods may include etching the substrate to remove a portion of the carbon-containing film and expose a top surface of the patterned surface and expose the substrate between the patterned surfaces. The patterned surface may be an EUV photoresist pattern, and the carbon-containing film may be formed on the sidewall and act as a spacer to reduce the critical dimension (CD).
    Type: Application
    Filed: June 14, 2022
    Publication date: December 14, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Xinke Wang, Zeqing Shen, Susmit Singha Roy, Abhijit Basu Mallick, Bhaskar Jyoti Bhuyan, Jiecong Tang, John Sudijono, Mark Saly
  • Publication number: 20230382933
    Abstract: Molybdenum(0) and coordination complexes are described. Methods for depositing molybdenum-containing films on a substrate are described. The substrate is exposed to a molybdenum precursor and a reactant to form the molybdenum-containing film (e.g., elemental molybdenum, molybdenum oxide, molybdenum carbide, molybdenum silicide, molybdenum disulfide, molybdenum nitride). The exposures can be sequential or simultaneous.
    Type: Application
    Filed: August 10, 2023
    Publication date: November 30, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Chandan Kr Barik, John Sudijono, Chandan Das, Doreen Wei Ying Yong, Mark Saly, Bhaskar Jyoti Bhuyan, Feng Q. Liu
  • Publication number: 20230386839
    Abstract: Embodiments disclosed herein include methods of depositing a metal oxo photoresist using dry deposition processes. In an embodiment, the method comprises forming a first metal oxo film on the substrate with a first vapor phase process including a first metal precursor vapor and a first oxidant vapor, and forming a second metal oxo film over the first metal oxo film with a second vapor phase process including a second metal precursor vapor and a second oxidant vapor.
    Type: Application
    Filed: December 16, 2022
    Publication date: November 30, 2023
    Inventors: Lakmal Charidu Kalutarage, Mark Joseph Saly, Bhaskar Jyoti Bhuyan, Thomas Joseph Knisley, Kelvin Chan, Regina Germanie Freed, David Michael Thompson, Susmit Singha Roy, Madhur Sachan
  • Publication number: 20230386833
    Abstract: Embodiments of the disclosure relate to methods for selectively removing metal material from the top surface and sidewalls of a feature. The metal material which is covered by a flowable polymer material remains unaffected. In some embodiments, the metal material is formed by physical vapor deposition resulting in a relatively thin sidewall thickness. Any metal material remaining on the sidewall after removal of the metal material from the top surface may be etched by an additional etch process. The resulting metal layer at the bottom of the feature facilitates selective metal gapfill of the feature.
    Type: Application
    Filed: May 25, 2022
    Publication date: November 30, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Liqi Wu, Feng Q. Liu, Bhaskar Jyoti Bhuyan, James Hugh Connolly, Zhimin Qi, Jie Zhang, Wei Dou, Aixi Zhang, Mark Saly, Jiang Lu, Rongjun Wang, David Thompson, Xianmin Tang
  • Patent number: 11821085
    Abstract: Methods of depositing a film selectively onto a first substrate surface relative to a second substrate surface are described. The methods include exposing the substrate surfaces to a blocking compound to selectively form a blocking layer on at least a portion of the first surface over the second surface. The substrate is sequentially exposed to a metal precursor with a kinetic diameter in excess of 21 angstroms and a reactant to selectively form a metal-containing layer on the second surface over the blocking layer or the first surface. The relatively larger metal precursors of some embodiments allow for the use of blocking layers with gaps or voids without the loss of selectivity.
    Type: Grant
    Filed: February 23, 2021
    Date of Patent: November 21, 2023
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Bhaskar Jyoti Bhuyan, Mark Saly, David Thompson, Tobin Kaufman-Osborn, Kurt Fredrickson, Thomas Knisley, Liqi Wu
  • Patent number: 11823893
    Abstract: Methods of forming SiCON films comprising sequential exposure to a silicon precursor and a mixture of alkanolamine and amine reactants and an optional plasma are described. Methods of forming a silicon-containing film comprising sequential exposure to a silicon precursor and an epoxide with an optional plasma exposure are also described.
    Type: Grant
    Filed: October 12, 2020
    Date of Patent: November 21, 2023
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Mark Saly, David Thompson, Thomas Knisley, Bhaskar Jyoti Bhuyan
  • Publication number: 20230335391
    Abstract: Methods of selectively depositing a carbon-containing layer are described. Exemplary processing methods may include flowing a first precursor over a substrate comprising a metal surface and a non-metal surface to form a first portion of an initial carbon-containing film on the metal surface. The methods may include removing a first precursor effluent from the substrate. A second precursor may then be flowed over the substrate to react with the first portion of the initial carbon-containing layer. The methods may include removing a second precursor effluent from the substrate. The methods may include pre-treating the metal surface of the substrate to form a metal oxide surface on the metal surface.
    Type: Application
    Filed: April 18, 2022
    Publication date: October 19, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Xinke Wang, Bhaskar Jyoti Bhuyan, Zeqing Shen, Susmit Singha Roy, Abhijit Basu Mallik, Jiecong Tang, John Sudijono, Mark Saly
  • Publication number: 20230317516
    Abstract: Methods for selectively depositing on metallic surfaces are disclosed. Some embodiments of the disclosure utilize a metal-carbonyl containing precursor to form a self-assembled monolayer (SAM) on metallic surfaces.
    Type: Application
    Filed: July 14, 2022
    Publication date: October 5, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Muthukumar Kaliappan, Michael Haverty, Bhaskar Jyoti Bhuyan, Mark Saly, Aaron Dangerfield, Michael L. McSwiney, Feng Q. Liu, Xiangjin Xie