Patents by Inventor Bo-Rong Chen

Bo-Rong Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240096781
    Abstract: A package structure including a semiconductor die, a redistribution circuit structure and an electronic device is provided. The semiconductor die is laterally encapsulated by an insulating encapsulation. The redistribution circuit structure is disposed on the semiconductor die and the insulating encapsulation. The redistribution circuit structure includes a colored dielectric layer, inter-dielectric layers and redistribution conductive layers embedded in the inter-dielectric layers. The electronic device is disposed over the colored dielectric layer and electrically connected to the redistribution circuit structure.
    Type: Application
    Filed: March 20, 2023
    Publication date: March 21, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Ti Lu, Hao-Yi Tsai, Chia-Hung Liu, Yu-Hsiang Hu, Hsiu-Jen Lin, Tzuan-Horng Liu, Chih-Hao Chang, Bo-Jiun Lin, Shih-Wei Chen, Hung-Chun Cho, Pei-Rong Ni, Hsin-Wei Huang, Zheng-Gang Tsai, Tai-You Liu, Po-Chang Shih, Yu-Ting Huang
  • Patent number: 11935947
    Abstract: An enhancement mode high electron mobility transistor (HEMT) includes a group III-V semiconductor body, a group III-V barrier layer and a gate structure. The group III-V barrier layer is disposed on the group III-V semiconductor body, and the gate structure is a stacked structure disposed on the group III-V barrier layer. The gate structure includes a gate dielectric and a group III-V gate layer disposed on the gate dielectric, and the thickness of the gate dielectric is between 15 nm to 25 nm.
    Type: Grant
    Filed: October 8, 2019
    Date of Patent: March 19, 2024
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chih-Tung Yeh, Chun-Ming Chang, Bo-Rong Chen, Shin-Chuan Huang, Wen-Jung Liao, Chun-Liang Hou
  • Publication number: 20240014310
    Abstract: A method for fabricating high electron mobility transistor (HEMT) includes the steps of: forming a buffer layer on a substrate; forming a barrier layer on the buffer layer; forming a hard mask on the barrier layer; performing an implantation process through the hard mask to form a doped region in the barrier layer and the buffer layer; removing the hard mask and the barrier layer to form a first trench; forming a gate dielectric layer on the hard mask and into the first trench; forming a gate electrode on the gate dielectric layer; and forming a source electrode and a drain electrode adjacent to two sides of the gate electrode.
    Type: Application
    Filed: September 21, 2023
    Publication date: January 11, 2024
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Shin-Chuan Huang, Chih-Tung Yeh, Chun-Ming Chang, Bo-Rong Chen, Wen-Jung Liao, Chun-Liang Hou
  • Publication number: 20230378314
    Abstract: A method for fabricating high electron mobility transistor (HEMT) includes the steps of: forming a first barrier layer on a substrate; forming a p-type semiconductor layer on the first barrier layer; forming a hard mask on the p-type semiconductor layer; patterning the hard mask and the p-type semiconductor layer; and forming a spacer adjacent to the hard mask and the p-type semiconductor layer.
    Type: Application
    Filed: July 13, 2023
    Publication date: November 23, 2023
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Bo-Rong Chen, Che-Hung Huang, Chun-Ming Chang, Yi-Shan Hsu, Chih-Tung Yeh, Shin-Chuan Huang, Wen-Jung Liao, Chun-Liang Hou
  • Publication number: 20230369448
    Abstract: A method for fabricating high electron mobility transistor (HEMT) includes the steps of: forming a first barrier layer on a substrate; forming a p-type semiconductor layer on the first barrier layer; forming a hard mask on the p-type semiconductor layer; patterning the hard mask and the p-type semiconductor layer; and forming a spacer adjacent to the hard mask and the p-type semiconductor layer.
    Type: Application
    Filed: July 13, 2023
    Publication date: November 16, 2023
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Bo-Rong Chen, Che-Hung Huang, Chun-Ming Chang, Yi-Shan Hsu, Chih-Tung Yeh, Shin-Chuan Huang, Wen-Jung Liao, Chun-Liang Hou
  • Patent number: 11804544
    Abstract: A method for fabricating high electron mobility transistor (HEMT) includes the steps of: forming a buffer layer on a substrate; forming a barrier layer on the buffer layer; forming a hard mask on the barrier layer; performing an implantation process through the hard mask to form a doped region in the barrier layer and the buffer layer; removing the hard mask and the barrier layer to form a first trench; forming a gate dielectric layer on the hard mask and into the first trench; forming a gate electrode on the gate dielectric layer; and forming a source electrode and a drain electrode adjacent to two sides of the gate electrode.
    Type: Grant
    Filed: January 14, 2022
    Date of Patent: October 31, 2023
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Shin-Chuan Huang, Chih-Tung Yeh, Chun-Ming Chang, Bo-Rong Chen, Wen-Jung Liao, Chun-Liang Hou
  • Patent number: 11749740
    Abstract: A method for fabricating high electron mobility transistor (HEMT) includes the steps of: forming a first barrier layer on a substrate; forming a p-type semiconductor layer on the first barrier layer; forming a hard mask on the p-type semiconductor layer; patterning the hard mask and the p-type semiconductor layer; and forming a spacer adjacent to the hard mask and the p-type semiconductor layer.
    Type: Grant
    Filed: December 31, 2019
    Date of Patent: September 5, 2023
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Bo-Rong Chen, Che-Hung Huang, Chun-Ming Chang, Yi-Shan Hsu, Chih-Tung Yeh, Shin-Chuan Huang, Wen-Jung Liao, Chun-Liang Hou
  • Patent number: 11502177
    Abstract: A high-electron mobility transistor includes a substrate, a GaN channel layer over the substrate, an AlGaN layer over the GaN channel layer, a gate recess in the AlGaN layer, a source region and a drain region on opposite sides of the gate recess, a GaN source layer and a GaN drain layer grown on the AlGaN layer within the source region and the drain region, respectively, a p-GaN gate layer in and on the gate recess; and a re-grown AlGaN film on the AlGaN layer, on the GaN source layer and the GaN drain layer, and on interior surface of the gate recess.
    Type: Grant
    Filed: June 3, 2021
    Date of Patent: November 15, 2022
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Shin-Chuan Huang, Chih-Tung Yeh, Chun-Ming Chang, Bo-Rong Chen, Wen-Jung Liao, Chun-Liang Hou
  • Patent number: 11489048
    Abstract: A method for forming a high-electron mobility transistor is disclosed. A substrate is provided. A buffer layer is formed over the substrate. A GaN channel layer is formed over the buffer layer. An AlGaN layer is formed over the GaN channel layer. A GaN source layer and a GaN drain layer are formed on the AlGaN layer within a source region and a drain region, respectively. A gate recess is formed in the AlGaN layer between the source region and the drain region. A p-GaN gate layer is then formed in and on the gate recess.
    Type: Grant
    Filed: June 3, 2021
    Date of Patent: November 1, 2022
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Shin-Chuan Huang, Chih-Tung Yeh, Chun-Ming Chang, Bo-Rong Chen, Wen-Jung Liao, Chun-Liang Hou
  • Patent number: 11407757
    Abstract: Disclosed are compounds of formula (I) below and tautomers, stereoisomers, isotopologues, or pharmaceutically acceptable salts thereof: in which each of variables R1, ring A, L, W, V, and G is defined herein. Also disclosed are a method for treating disease or disorder mediated by Tyro3, Axl, and/or Mer kinase with a compound of formula (I) or a tautomer, stereoisomer, isotopologue, or salt thereof and a pharmaceutical composition containing same.
    Type: Grant
    Filed: December 26, 2018
    Date of Patent: August 9, 2022
    Assignee: Development Center for Biotechnology
    Inventors: Shih-Chieh Yen, Chu-Bin Liao, Hui-Chen Wang, Po-Ting Chen, Yu-Chih Pan, Tsung-Hui Li, Bo-Rong Chen, Shian-Yi Chiou
  • Publication number: 20220140124
    Abstract: A method for fabricating high electron mobility transistor (HEMT) includes the steps of: forming a buffer layer on a substrate; forming a barrier layer on the buffer layer; forming a hard mask on the barrier layer; performing an implantation process through the hard mask to form a doped region in the barrier layer and the buffer layer; removing the hard mask and the barrier layer to form a first trench; forming a gate dielectric layer on the hard mask and into the first trench; forming a gate electrode on the gate dielectric layer; and forming a source electrode and a drain electrode adjacent to two sides of the gate electrode.
    Type: Application
    Filed: January 14, 2022
    Publication date: May 5, 2022
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Shin-Chuan Huang, Chih-Tung Yeh, Chun-Ming Chang, Bo-Rong Chen, Wen-Jung Liao, Chun-Liang Hou
  • Patent number: 11264492
    Abstract: A method for fabricating high electron mobility transistor (HEMT) includes the steps of: forming a buffer layer on a substrate; forming a barrier layer on the buffer layer; forming a hard mask on the barrier layer; performing an implantation process through the hard mask to form a doped region in the barrier layer and the buffer layer; removing the hard mask and the barrier layer to form a first trench; forming a gate dielectric layer on the hard mask and into the first trench; forming a gate electrode on the gate dielectric layer; and forming a source electrode and a drain electrode adjacent to two sides of the gate electrode.
    Type: Grant
    Filed: August 7, 2019
    Date of Patent: March 1, 2022
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Shin-Chuan Huang, Chih-Tung Yeh, Chun-Ming Chang, Bo-Rong Chen, Wen-Jung Liao, Chun-Liang Hou
  • Publication number: 20210288149
    Abstract: A method for forming a high-electron mobility transistor is disclosed. A substrate is provided. A buffer layer is formed over the substrate. A GaN channel layer is formed over the buffer layer. An AlGaN layer is formed over the GaN channel layer. A GaN source layer and a GaN drain layer are formed on the AlGaN layer within a source region and a drain region, respectively. A gate recess is formed in the AlGaN layer between the source region and the drain region. A p-GaN gate layer is then formed in and on the gate recess.
    Type: Application
    Filed: June 3, 2021
    Publication date: September 16, 2021
    Inventors: Shin-Chuan Huang, Chih-Tung Yeh, Chun-Ming Chang, Bo-Rong Chen, Wen-Jung Liao, Chun-Liang Hou
  • Publication number: 20210288150
    Abstract: A high-electron mobility transistor includes a substrate, a GaN channel layer over the substrate, an AlGaN layer over the GaN channel layer, a gate recess in the AlGaN layer, a source region and a drain region on opposite sides of the gate recess, a GaN source layer and a GaN drain layer grown on the AlGaN layer within the source region and the drain region, respectively, a p-GaN gate layer in and on the gate recess; and a re-grown AlGaN film on the AlGaN layer, on the GaN source layer and the GaN drain layer, and on interior surface of the gate recess.
    Type: Application
    Filed: June 3, 2021
    Publication date: September 16, 2021
    Inventors: Shin-Chuan Huang, Chih-Tung Yeh, Chun-Ming Chang, Bo-Rong Chen, Wen-Jung Liao, Chun-Liang Hou
  • Patent number: 11063124
    Abstract: A high-electron mobility transistor includes a substrate; a buffer layer over the substrate; a GaN channel layer over the buffer layer; a AlGaN layer over the GaN channel layer; a gate recess in the AlGaN layer; a source region and a drain region on opposite sides of the gate recess; a GaN source layer and a GaN drain layer grown on the AlGaN layer within the source region and the drain region, respectively; and a p-GaN gate layer in and on the gate recess.
    Type: Grant
    Filed: November 22, 2019
    Date of Patent: July 13, 2021
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Shin-Chuan Huang, Chih-Tung Yeh, Chun-Ming Chang, Bo-Rong Chen, Wen-Jung Liao, Chun-Liang Hou
  • Publication number: 20210175343
    Abstract: A method for fabricating high electron mobility transistor (HEMT) includes the steps of: forming a first barrier layer on a substrate; forming a p-type semiconductor layer on the first barrier layer; forming a hard mask on the p-type semiconductor layer; patterning the hard mask and the p-type semiconductor layer; and forming a spacer adjacent to the hard mask and the p-type semiconductor layer.
    Type: Application
    Filed: December 31, 2019
    Publication date: June 10, 2021
    Inventors: Bo-Rong Chen, Che-Hung Huang, Chun-Ming Chang, Yi-Shan Hsu, Chih-Tung Yeh, Shin-Chuan Huang, Wen-Jung Liao, Chun-Liang Hou
  • Publication number: 20210143257
    Abstract: A high-electron mobility transistor includes a substrate; a buffer layer over the substrate; a GaN channel layer over the buffer layer; a AlGaN layer over the GaN channel layer; a gate recess in the AlGaN layer; a source region and a drain region on opposite sides of the gate recess; a GaN source layer and a GaN drain layer grown on the AlGaN layer within the source region and the drain region, respectively; and a p-GaN gate layer in and on the gate recess.
    Type: Application
    Filed: November 22, 2019
    Publication date: May 13, 2021
    Inventors: Shin-Chuan Huang, Chih-Tung Yeh, Chun-Ming Chang, Bo-Rong Chen, Wen-Jung Liao, Chun-Liang Hou
  • Patent number: 11004952
    Abstract: A high-electron mobility transistor includes a substrate; a buffer layer on the substrate; a AlGaN layer on the buffer layer; a passivation layer on the AlGaN layer; a source region and a drain region on the AlGaN layer; a source layer and a drain layer on the AlGaN layer within the source region and the drain region, respectively; a gate on the AlGaN layer between the source region and a drain region; and a field plate on the gate and the passivation layer. The field plate includes an extension portion that laterally extends to an area between the gate and the drain region. The extension portion has a wave-shaped bottom surface.
    Type: Grant
    Filed: December 1, 2019
    Date of Patent: May 11, 2021
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chih-Tung Yeh, Shin-Chuan Huang, Chun-Ming Chang, Bo-Rong Chen, Wen-Jung Liao, Chun-Liang Hou
  • Publication number: 20210134978
    Abstract: A high-electron mobility transistor includes a substrate; a buffer layer on the substrate; a AlGaN layer on the buffer layer; a passivation layer on the AlGaN layer; a source region and a drain region on the AlGaN layer; a source layer and a drain layer on the AlGaN layer within the source region and the drain region, respectively; a gate on the AlGaN layer between the source region and a drain region; and a field plate on the gate and the passivation layer. The field plate includes an extension portion that laterally extends to an area between the gate and the drain region. The extension portion has a wave-shaped bottom surface.
    Type: Application
    Filed: December 1, 2019
    Publication date: May 6, 2021
    Inventors: Chih-Tung Yeh, Shin-Chuan Huang, Chun-Ming Chang, Bo-Rong Chen, Wen-Jung Liao, Chun-Liang Hou
  • Publication number: 20210066484
    Abstract: An enhancement mode high electron mobility transistor (HEMT) includes a group III-V semiconductor body, a group III-V barrier layer and a gate structure. The group III-V barrier layer is disposed on the group III-V semiconductor body, and the gate structure is a stacked structure disposed on the group III-V barrier layer. The gate structure includes a gate dielectric and a group III-V gate layer disposed on the gate dielectric, and the thickness of the gate dielectric is between 15 nm to 25 nm.
    Type: Application
    Filed: October 8, 2019
    Publication date: March 4, 2021
    Inventors: Chih-Tung Yeh, Chun-Ming Chang, Bo-Rong Chen, Shin-Chuan Huang, Wen-Jung Liao, Chun-Liang Hou