HIGH ELECTRON MOBILITY TRANSISTOR AND METHOD FOR FABRICATING THE SAME
A method for fabricating high electron mobility transistor (HEMT) includes the steps of: forming a first barrier layer on a substrate; forming a p-type semiconductor layer on the first barrier layer; forming a hard mask on the p-type semiconductor layer; patterning the hard mask and the p-type semiconductor layer; and forming a spacer adjacent to the hard mask and the p-type semiconductor layer.
Latest UNITED MICROELECTRONICS CORP. Patents:
This application is a division of U.S. application Ser. No. 16/731,058, filed on Dec. 31, 2019. The content of the application is incorporated herein by reference.
BACKGROUND OF THE INVENTION 1. Field of the InventionThe invention relates to a high electron mobility transistor (HEMT) and method for fabricating the same.
2. Description of the Prior ArtHigh electron mobility transistor (HEMT) fabricated from GaN-based materials have various advantages in electrical, mechanical, and chemical aspects of the field. For instance, advantages including wide band gap, high break down voltage, high electron mobility, high elastic modulus, high piezoelectric and piezoresistive coefficients, and chemical inertness. All of these advantages allow GaN-based materials to be used in numerous applications including high intensity light emitting diodes (LEDs), power switching devices, regulators, battery protectors, display panel drivers, and communication devices.
SUMMARY OF THE INVENTIONAccording to an embodiment of the present invention, a method for fabricating high electron mobility transistor (HEMT) includes the steps of: forming a first barrier layer on a substrate; forming a p-type semiconductor layer on the first barrier layer; forming a hard mask on the p-type semiconductor layer; patterning the hard mask and the p-type semiconductor layer; and forming a spacer adjacent to the hard mask and the p-type semiconductor layer.
According to another aspect of the present invention, a method for fabricating high electron mobility transistor (HEMT) includes the steps of: forming a first barrier layer on a substrate; forming a p-type semiconductor layer on the first barrier layer; patterning the p-type semiconductor layer; and forming a spacer adjacent to the p-type semiconductor layer.
According to yet another aspect of the present invention, a high electron mobility transistor (HEMT) includes: a buffer layer on a substrate; a first barrier layer on the buffer layer; a p-type semiconductor layer on the first barrier layer; and a spacer adjacent to the p-type semiconductor layer.
These and other objectives of the present invention will no doubt become obvious to those of ordinary skill in the art after reading the following detailed description of the preferred embodiment that is illustrated in the various figures and drawings.
Referring to the
Next, a buffer layer 14 is formed on the substrate 12. According to an embodiment of the present invention, the buffer layer 14 is preferably made of III-V semiconductors such as gallium nitride (GaN), in which a thickness of the buffer layer 14 could be between 0.5 microns to 10 microns. According to an embodiment of the present invention, the formation of the buffer layer 14 could be accomplished by a molecular-beam epitaxy (MBE) process, a metal organic chemical vapor deposition (MOCVD) process, a chemical vapor deposition (CVD) process, a hydride vapor phase epitaxy (HVPE) process, or combination thereof.
Next, a first barrier layer 16 is formed on the surface of the buffer layer 14. In this embodiment, the first barrier layer 16 is preferably made of III-V semiconductor such as aluminum gallium nitride (AlxGa1-xN), in which 0<x<1, x being less than or equal to 20%, and the first barrier layer 16 preferably includes an epitaxial layer formed through epitaxial growth process. Similar to the buffer layer 14, the formation of the first barrier layer 16 on the buffer layer 14 could be accomplished by a molecular-beam epitaxy (MBE) process, a metal organic chemical vapor deposition (MOCVD) process, a chemical vapor deposition (CVD) process, a hydride vapor phase epitaxy (HVPE) process, or combination thereof.
Next, a p-type semiconductor layer 18 and a hard mask 20 are sequentially formed on the surface of the first barrier layer 16. In this embodiment, the p-type semiconductor layer 18 is preferably a III-V compound layer including p-type GaN (p-GaN) and the formation of the p-type semiconductor layer 18 on the first barrier layer 16 could be accomplished by a molecular-beam epitaxy (MBE) process, a metal organic chemical vapor deposition (MOCVD) process, a chemical vapor deposition (CVD) process, a hydride vapor phase epitaxy (HVPE) process, or combination thereof. The hard mask 20 could include dielectric, conductive, or metal material including but not limited to for example silicon nitride, silicon oxide, or titanium nitride.
Next, as shown in
Next, as shown in
Next, as shown in
Moreover, the first barrier layer 16 and the second barrier layer 24 preferably include different concentrations of aluminum or more specifically the aluminum concentration of the first barrier layer 16 is less than the aluminum concentration of the second barrier layer 24. For instance, the first barrier layer 16 is made of III-V semiconductor such as aluminum gallium nitride (AlxGa1-xN), in which 0<x<1, x being 5-15% and the second barrier layer 24 is made of III-V semiconductor such as aluminum gallium nitride (AlxGa1-xN), in which 0<x<1, x being 15-50%. Similar to the formation of the first barrier layer 16, the formation of the second barrier layer 24 on the first buffer layer 16 could be accomplished by a molecular-beam epitaxy (MBE) process, a metal organic chemical vapor deposition (MOCVD) process, a chemical vapor deposition (CVD) process, a hydride vapor phase epitaxy (HVPE) process, or combination thereof.
Next, as shown in
It should be noted that the hard mask 20 in this embodiment is preferably made of conductive material such as titanium nitride (TiN) so that the gate electrode 28 could be disposed directly on the surface of the hard mask 20 without contacting the p-type semiconductor layer 18 directly. Moreover, the gate electrode 28, the source electrode 30, and the drain electrode 32 are preferably made of metal, in which the gate electrode 28 is preferably made of Schottky metal while the source electrode 30 and the drain electrode 32 are preferably made of ohmic contact metals. According to an embodiment of the present invention, each of the gate electrode 28, source electrode 30, and drain electrode 32 could include gold (Au), Silver (Ag), platinum (Pt), titanium (Ti), aluminum (Al), tungsten (W), palladium (Pd), or combination thereof. Preferably, it would be desirable to conduct an electroplating process, sputtering process, resistance heating evaporation process, electron beam evaporation process, physical vapor deposition (PVD) process, chemical vapor deposition (CVD) process, or combination thereof to form electrode materials in the aforementioned recesses, and then pattern the electrode materials through one or more etching processes to form the gate electrode 28, source electrode 30, and the drain electrode 32. This completes the fabrication of a HEMT according to an embodiment of the present invention.
Referring to
In contrast to the hard mask 20 in
Referring to
Next, a buffer layer 44 is formed on the substrate 12. According to an embodiment of the present invention, the buffer layer 44 is preferably made of III-V semiconductors such as gallium nitride (GaN), in which a thickness of the buffer layer 44 could be between 0.5 microns to 10 microns. According to an embodiment of the present invention, the formation of the buffer layer 44 could be accomplished by a molecular-beam epitaxy (MBE) process, a metal organic chemical vapor deposition (MOCVD) process, a chemical vapor deposition (CVD) process, a hydride vapor phase epitaxy (HVPE) process, or combination thereof.
Next, a first barrier layer 46 is formed on the surface of the buffer layer 44. In this embodiment, the first barrier layer 46 is preferably made of III-V semiconductor such as aluminum gallium nitride (AlxGa1-xN), in which 0<x<1, x being less than or equal to 20%, and the first barrier layer 46 preferably includes an epitaxial layer formed through epitaxial growth process. Similar to the buffer layer 44, the formation of the first barrier layer 46 on the buffer layer 44 could be accomplished by a molecular-beam epitaxy (MBE) process, a metal organic chemical vapor deposition (MOCVD) process, a chemical vapor deposition (CVD) process, a hydride vapor phase epitaxy (HVPE) process, or combination thereof.
Next, a p-type semiconductor layer 48 is formed on the surface of the first barrier layer 46. In this embodiment, the p-type semiconductor layer 48 is preferably a III-V compound layer including p-type GaN (p-GaN) and the formation of the p-type semiconductor layer 48 on the first barrier layer 46 could be accomplished by a molecular-beam epitaxy (MBE) process, a metal organic chemical vapor deposition (MOCVD) process, a chemical vapor deposition (CVD) process, a hydride vapor phase epitaxy (HVPE) process, or combination thereof.
Next similar to
Next, as shown in
Next, as shown in
Moreover, the first barrier layer 46 and the second barrier layer 52 preferably include different concentrations of aluminum or more specifically the aluminum concentration of the first barrier layer 46 is less than the aluminum concentration of the second barrier layer 52. For instance, the first barrier layer 46 is made of III-V semiconductor such as aluminum gallium nitride (AlxGa1-xN), in which 0<x<1, x being 5-15% and the second barrier layer 52 is made of III-V semiconductor such as aluminum gallium nitride (AlxGa1-xN), in which 0<x<1, x being 15-50%. Similar to the formation of the first barrier layer 46, the formation of the second barrier layer 52 on the first buffer layer 46 could be accomplished by a molecular-beam epitaxy (MBE) process, a metal organic chemical vapor deposition (MOCVD) process, a chemical vapor deposition (CVD) process, a hydride vapor phase epitaxy (HVPE) process, or combination thereof.
Next, as shown in
Next, as shown in
Next, as shown in
In this embodiment, the gate electrode 58, the source electrode 60, and the drain electrode 62 are preferably made of metal, in which the gate electrode 58 is preferably made of Schottky metal while the source electrode 60 and the drain electrode 62 are preferably made of ohmic contact metals. According to an embodiment of the present invention, each of the gate electrode 58, source electrode 60, and drain electrode 62 could include gold (Au), Silver (Ag), platinum (Pt), titanium (Ti), aluminum (Al), tungsten (W), palladium (Pd), or combination thereof. Preferably, it would be desirable to conduct an electroplating process, sputtering process, resistance heating evaporation process, electron beam evaporation process, physical vapor deposition (PVD) process, chemical vapor deposition (CVD) process, or combination thereof to form electrode materials in the aforementioned recesses, and then pattern the electrode materials through one or more etching processes to form the gate electrode 58, source electrode 60, and the drain electrode 62. This completes the fabrication of a HEMT according to an embodiment of the present invention.
Those skilled in the art will readily observe that numerous modifications and alterations of the device and method may be made while retaining the teachings of the invention. Accordingly, the above disclosure should be construed as limited only by the metes and bounds of the appended claims.
Claims
1. A method for fabricating high electron mobility transistor (HEMT), comprising:
- forming a first barrier layer on a substrate;
- forming a p-type semiconductor layer on the first barrier layer;
- forming a hard mask on the p-type semiconductor layer;
- patterning the hard mask and the p-type semiconductor layer; and
- forming a spacer adjacent to the hard mask and the p-type semiconductor layer.
2. The method of claim 1, further comprising forming a buffer layer on the substrate before forming the first barrier layer.
3. The method of claim 1, further comprising:
- forming a second barrier layer on the first barrier layer adjacent to the spacer;
- forming a gate electrode on the hard mask; and
- forming a source electrode and a drain electrode adjacent to two sides of the spacer.
4. The method of claim 3, wherein the hard mask comprises a conductive material.
5. The method of claim 1, further comprising:
- forming a second barrier layer on the first barrier layer adjacent to the spacer;
- forming a gate electrode in the hard mask and on the p-type semiconductor layer; and
- forming a source electrode and a drain electrode adjacent to two sides of the spacer.
6. The method of claim 5, wherein the hard mask comprises a dielectric material.
7. The method of claim 1, wherein the first barrier layer comprise AlxGa1-xN.
8. A method for fabricating high electron mobility transistor (HEMT), comprising:
- forming a first barrier layer on a substrate;
- forming a p-type semiconductor layer on the first barrier layer;
- patterning the p-type semiconductor layer; and
- forming a spacer adjacent to the p-type semiconductor layer.
9. The method of claim 8, further comprising forming a buffer layer on the substrate before forming the first barrier layer.
10. The method of claim 8, further comprising:
- forming a second barrier layer on the p-type semiconductor layer and the first barrier layer adjacent to the spacer;
- forming a hard mask on the second barrier layer;
- planarizing the hard mask;
- forming a gate electrode on the p-type semiconductor layer; and
- forming a source electrode and a drain electrode adjacent to two sides of the spacer.
11. The method of claim 10, further comprising planarizing the hard mask and the second barrier layer so that top surfaces of the hard mask and the p-type semiconductor layer are coplanar.
12. The method of claim 8, wherein the first barrier layer comprise AlxGa1-xN.
Type: Application
Filed: Jul 13, 2023
Publication Date: Nov 16, 2023
Applicant: UNITED MICROELECTRONICS CORP. (Hsin-Chu City)
Inventors: Bo-Rong Chen (Hsinchu County), Che-Hung Huang (Hsinchu City), Chun-Ming Chang (Kaohsiung City), Yi-Shan Hsu (Taipei City), Chih-Tung Yeh (Taoyuan City), Shin-Chuan Huang (Tainan City), Wen-Jung Liao (Hsinchu City), Chun-Liang Hou (Hsinchu County)
Application Number: 18/221,396