Patents by Inventor Bo-Yun Jang

Bo-Yun Jang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120009120
    Abstract: The present disclosure relates to a thermal cracking resistant zeolite membrane and a method of fabricating the same. The method includes dissolving an alumina-based material, a silica-based material and sodium hydroxide in water to prepare an aqueous solution, stirring the aqueous solution to form a hydrothermal solution, preparing a slurry of zeolite seeds through wet-type vibration pulverization and centrifugal separation of zeolite powder, passing the zeolite seeds through a support by vacuum filtration such that the zeolite seeds can be infiltrated into an inner region of the support ranging from a depth of 3 ?m to a depth corresponding to 50% of a total thickness of the support, and immersing the support into the hydrothermal solution for hydrothermal treatment to grow a dense zeolite separation layer not only on the surface of the support but also on the inner region thereof.
    Type: Application
    Filed: July 26, 2010
    Publication date: January 12, 2012
    Applicant: KOREA INSTITUTE OF ENERGY RESEARCH
    Inventors: CHURL-HEE CHO, Jeong-Gu Yeo, Young-Soo Ahn, Si-Kyung Kim, Joon-Soo Kim, Nam-Jo Jeong, Bo-Yun Jang, Dong-Kook Kim, Hong-Soo Kim
  • Publication number: 20110305891
    Abstract: The present disclosure provides an apparatus for manufacturing a silicon substrate for solar cells using continuous casting, and a method for manufacturing a silicon substrate using the same. The apparatus includes a raw silicon feeder, a silicon melting unit melting raw silicon to form molten silicon, a molten silicon storage unit storing the molten silicon supplied from the silicon melting unit and tapping the molten silicon to provide a silicon melt having a constant thickness, a transfer board transferring the tapped silicon melt, and a silicon substrate forming unit cooling the silicon melt transferred by the transfer board to form a silicon substrate. The molten silicon stored in the molten silicon storage unit has a surface temperature of 1300˜1500° C., the transfer board is preheated to 700˜1400° C., and a transfer time of the silicon substrate after tapping the molten silicon from the molten silicon storage unit is 0.5˜3.5 seconds.
    Type: Application
    Filed: June 13, 2011
    Publication date: December 15, 2011
    Applicant: KOREA INSTITUTE OF ENERGY RESEARCH
    Inventors: Bo-Yun JANG, Jin-Seok LEE, Young-Soo AHN
  • Publication number: 20110303290
    Abstract: The present disclosure provides a method and apparatus for manufacturing a silicon substrate using inert gas blowing during continuous casting to provide excellent productivity and surface quality. The apparatus includes a raw silicon feeder through which raw silicon is fed, a silicon melting unit disposed under the raw silicon feeder and melting the raw silicon to form molten silicon, a molten silicon storage unit storing the molten silicon supplied from the silicon melting unit and tapping the molten silicon to provide a silicon melt having a constant thickness, a transfer unit transferring the silicon melt tapped from the molten silicon storage unit, and a cooling unit cooling the silicon melt transferred by the transfer unit. Here, the cooling unit cools the silicon melt by blowing inert gas at a rate of 0.1˜2.5 Nm3/h.
    Type: Application
    Filed: June 13, 2011
    Publication date: December 15, 2011
    Applicant: KOREA INSTITUTE OF ENERGY RESEARCH
    Inventors: Bo-Yun JANG, Jin-Seok LEE, Young-Soo AHN
  • Publication number: 20110192837
    Abstract: Disclosed herein are a graphite crucible for electromagnetic induction-based silicon melting and an apparatus for silicon melting/refining using the same, which performs a melting operation by a combination of indirect melting and direct melting. The crucible is formed of a graphite material and includes a cylindrical body having an open upper part through which a silicon raw material is charged into the crucible, and an outer wall surround by an induction coil, wherein a plurality of first slits are vertically formed through the outer wall and an inner wall of the crucible, and a plurality of second slits are vertically formed from an edge of a disc-shaped bottom of the crucible toward a center of the bottom.
    Type: Application
    Filed: November 17, 2008
    Publication date: August 11, 2011
    Applicant: KOREA INSTITUTE OF ENERGY RESEARCH
    Inventors: Bo Yun Jang, Young Soo Ahn, Joon Soo Kim, Sang Hyun Park, Dong Kook Kim, Gwon Jong Yu
  • Publication number: 20100203334
    Abstract: The present disclosure relates to an apparatus for producing silicon nanocrystals, which can minimize plasma diffusion by finely adjusting a plasma region created by an ICP coil. The apparatus includes a reactor having an ICP coil wound around an outer wall thereof and a tube inserted into the reactor, wherein a primary gas for forming silicon nanocrystals and a secondary gas for surface reaction of the silicon nanocrystals are separately supplied to the reactor through an inner side and an outer side of the tube, respectively.
    Type: Application
    Filed: October 26, 2009
    Publication date: August 12, 2010
    Inventors: Bo-Yun JANG, Chang-Hyun Ko, Jeong-Chul Lee, Joon-Soo Kim, Joo-Seok Park
  • Publication number: 20100095883
    Abstract: Disclosed herein are a graphite crucible for electromagnetic induction-based silicon melting and an apparatus for silicon melting/refining using the same, which performs a melting operation by a combination of indirect melting and direct melting. The crucible is formed of a graphite material and includes a cylindrical body having an open upper part through which a silicon raw material is charged into the crucible, and an outer wall surrounded by an induction coil, wherein a plurality of slits are vertically formed through the outer wall and an inner wall of the crucible such that an electromagnetic force created by an electric current flowing in the induction coil acts toward an inner center of the crucible to prevent a silicon melt from contacting the inner wall of the crucible.
    Type: Application
    Filed: September 28, 2009
    Publication date: April 22, 2010
    Inventors: Bo Yun JANG, Young Soo Ahn, Joon Soo Kim, Sang Hyun Park, Dong Kook Kim, Gwon Jong Yu