Patents by Inventor Boris Fishkin

Boris Fishkin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7980255
    Abstract: In a first aspect, a module is provided that is adapted to process a wafer. The module includes a processing portion having one or more features such as (1) a rotatable wafer support for rotating an input wafer from a first orientation wherein the wafer is in line with a load port to a second orientation wherein the wafer is in line with an unload port; (2) a catcher adapted to contact and travel passively with a wafer as it is unloaded from the processing portion; (3) an enclosed output portion adapted to create a laminar air flow from one side thereof to the other; (4) an output portion having a plurality of wafer receivers; (5) submerged fluidnozzles; and/or (6) drying gas flow deflectors, etc. Other aspects include methods of wafer processing.
    Type: Grant
    Filed: August 28, 2007
    Date of Patent: July 19, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Younes Achkire, Alexander Lerner, Boris T. Govzman, Boris Fishkin, Michael Sugarman, Rashid Mavleiv, Haoquan Fang, Shijian Li, Guy Shirazi, Jianshe Tang
  • Patent number: 7718011
    Abstract: A method and apparatus for cleaning, rinsing and Marangoni drying substrates is provided. The invention includes spraying a line of fluid to a substrate, thereby creating an air/fluid interface line on the substrate; supplying a line of drying vapors to the air/fluid interface line, thereby creating a Marangoni drying effect along the air/fluid interface line; and moving the substrate relative to the air/fluid line. Numerous other aspects are provided.
    Type: Grant
    Filed: August 6, 2007
    Date of Patent: May 18, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Boris Fishkin, Michael Sherrard
  • Publication number: 20100006124
    Abstract: In a first aspect, a module is provided that is adapted to process a wafer. The module includes a processing portion having one or more features such as (1) a rotatable wafer support for rotating an input wafer from a first orientation wherein the wafer is in line with a load port to a second orientation wherein the wafer is in line with an unload port; (2) a catcher adapted to contact and travel passively with a wafer as it is unloaded from the processing portion; (3) an enclosed output portion adapted to create a laminar air flow from one side thereof to the other; (4) an output portion having a plurality of wafer receivers; (5) submerged fluid nozzles; and/or (6) drying gas flow deflectors, etc. Other aspects include methods of wafer processing.
    Type: Application
    Filed: December 29, 2008
    Publication date: January 14, 2010
    Inventors: Younes Achkire, Alexander Lerner, Boris T. Govzman, Boris Fishkin, Michael Sugarman, Rashid Mavleiv, Hoaquan Fang, Shijian Li, Guy Shirazi, Jianshe Tang
  • Publication number: 20090241996
    Abstract: In a first aspect, a module is provided that is adapted to process a wafer. The module includes a processing portion having one or more features such as (1) a rotatable wafer support for rotating an input wafer from a first orientation wherein the wafer is in line with a load port to a second orientation wherein the wafer is in line with an unload port; (2) a catcher adapted to contact and travel passively with a wafer as it is unloaded from the processing portion; (3) an enclosed output portion adapted to create a laminar air flow from one side thereof to the other; (4) an output portion having a plurality of wafer receivers; (5) submerged fluid nozzles; and/or (6) drying gas flow deflectors, etc. Other aspects include methods of wafer processing.
    Type: Application
    Filed: December 29, 2008
    Publication date: October 1, 2009
    Inventors: Younes Achkire, Alexander N. Lerner, Boris I. Govzman, Boris Fishkin, Michael N. Sugarman, Rashid A. Mavliev, Haoquan Fang, Shijian Li, Guy E. Shirazi, Jianshe Tang
  • Patent number: 7513062
    Abstract: In a first aspect, a first method of drying a substrate is provided. The first method includes the steps of (1) lifting a substrate through an air/fluid interface at a first rate; (2) directing a drying vapor at the air/fluid interface during lifting of the substrate; and (3) while a portion of the substrate remains in the air/fluid interface, reducing a rate at which a remainder of the substrate is lifted through the air/fluid interface to a second rate. The drying vapor may form an angle of about 23° with the air/fluid interface and/or the second rate may be about 2.5 mm/sec.
    Type: Grant
    Filed: February 9, 2005
    Date of Patent: April 7, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Younes Achkire, Alexander N Lerner, Boris Govzman, Boris Fishkin, Michael N Sugarman, Rashid A Mavliev, Haoquan Fang, Shijian Li, Guy E Shirazi, Jianshe Tang
  • Publication number: 20070295371
    Abstract: In a first aspect, a module is provided that is adapted to process a wafer. The module includes a processing portion having one or more features such as (1) a rotatable wafer support for rotating an input wafer from a first orientation wherein the wafer is in line with a load port to a second orientation wherein the wafer is in line with an unload port; (2) a catcher adapted to contact and travel passively with a wafer as it is unloaded from the processing portion; (3) an enclosed output portion adapted to create a laminar air flow from one side thereof to the other; (4) an output portion having a plurality of wafer receivers; (5) submerged fluid nozzles; and/or (6) drying gas flow deflectors, etc. Other aspects include methods of wafer processing.
    Type: Application
    Filed: August 28, 2007
    Publication date: December 27, 2007
    Inventors: Younes Achkire, Alexander Lerner, Boris Govzman, Boris Fishkin, Michael Sugarman, Rashid Mavleiv, Haoquan Fang, Shijian Li, Guy Shirazi, Jianshe Tang
  • Publication number: 20070272278
    Abstract: A method and apparatus for cleaning, rinsing and Marangoni drying substrates is provided. A line of fluid is sprayed along a substrate surface forming an air/fluid interface line, and a line of drying vapor is supplied to the interface line to achieve Marangoni drying. Thus, a large portion of the substrate is simultaneously dried. A preferred apparatus employs a tank of cleaning and/or rinsing fluid. Above the tank fluid a source of rinsing fluid directs rinsing fluid to the surface of a substrate forming a meniscus on the substrate surface as the substrate is lifted from the cleaning fluid, and a drying vapor source directs drying vapor to the meniscus. The drying vapor lowers the surface tension of the meniscus, inducing a Marangoni flow of rinsing fluid from the substrate's surface, and thereby drying the substrate. The cleaning fluid tank has a substrate receiving and cleaning portion and a substrate rinsing portion.
    Type: Application
    Filed: August 6, 2007
    Publication date: November 29, 2007
    Inventors: Boris Fishkin, Michael Sherrard
  • Patent number: 7252098
    Abstract: A method and apparatus for cleaning, rinsing and Marangoni drying substrates is provided. A line of fluid is sprayed along a substrate surface forming an air/fluid interface line, and a line of drying vapor is supplied to the interface line to achieve Marangoni drying. Thus, a large portion of the substrate is simultaneously dried. A preferred apparatus employs a tank of cleaning and/or rinsing fluid. Above the tank fluid a source of rinsing fluid directs rinsing fluid to the surface of a substrate forming a meniscus on the substrate surface as the substrate is lifted from the cleaning fluid, and a drying vapor source directs drying vapor to the meniscus. The drying vapor lowers the surface tension of the meniscus, inducing a Marangoni flow of rinsing fluid from the substrate's surface, and thereby drying the substrate. The cleaning fluid tank has a substrate receiving and cleaning portion and a substrate rinsing portion.
    Type: Grant
    Filed: September 22, 2003
    Date of Patent: August 7, 2007
    Assignee: Applied Materials, Inc.
    Inventors: Boris Fishkin, Michael Sherrard
  • Publication number: 20060260653
    Abstract: A method and apparatus for cleaning, rinsing and Marangoni drying substrates is provided. A line of fluid is sprayed along a substrate surface forming an air/fluid interface line, and a line of drying vapor is supplied to the interface line to achieve Marangoni drying. Thus, a large portion of the substrate is simultaneously dried. A preferred apparatus employs a tank of cleaning and/or rinsing fluid. Above the tank fluid a source of rinsing fluid directs rinsing fluid to the surface of a substrate forming a meniscus on the substrate surface as the substrate is lifted from the cleaning fluid, and a drying vapor source directs drying vapor to the meniscus. The drying vapor lowers the surface tension of the meniscus, inducing a Marangoni flow of rinsing fluid from the substrate's surface, and thereby drying the substrate. The cleaning fluid tank has a substrate receiving and cleaning portion and a substrate rinsing portion.
    Type: Application
    Filed: July 31, 2006
    Publication date: November 23, 2006
    Inventors: Boris Fishkin, Michael Sherrard
  • Publication number: 20060174921
    Abstract: In a first aspect, a module is provided that is adapted to process a wafer. The module includes a processing portion having one or more features such as (1) a rotatable wafer support for rotating an input wafer from a first orientation wherein the wafer is in line with a load port to a second orientation wherein the wafer is in line with an unload port; (2) a catcher adapted to contact and travel passively with a wafer as it is unloaded from the processing portion; (3) an enclosed output portion adapted to create a laminar air flow from one side thereof to the other; (4) an output portion having a plurality of wafer receivers; (5) submerged fluid nozzles; and/or (6) drying gas flow deflectors, etc. Other aspects include methods of wafer processing.
    Type: Application
    Filed: April 4, 2006
    Publication date: August 10, 2006
    Inventors: Younes Achkire, Alexander Lerner, Boris Govzman, Boris Fishkin, Michael Sugarman, Rashid Mavleiv, Haoquan Fang, Shijian Li, Guy Shirazi, Jianshe Tang
  • Publication number: 20050241684
    Abstract: In a first aspect, a module is provided that is adapted to process a wafer. The module includes a processing portion having one or more features such as (1) a rotatable wafer support for rotating an input wafer from a first orientation wherein the wafer is in line with a load port to a second orientation wherein the wafer is in line with an unload port; (2) a catcher adapted to contact and travel passively with a wafer as it is unloaded from the processing portion; (3) an enclosed output portion adapted to create a laminar air flow from one side thereof to the other; (4) an output portion having a plurality of wafer receivers; (5) submerged fluid nozzles; and/or (6) drying gas flow deflectors, etc. Other aspects include methods of wafer processing.
    Type: Application
    Filed: July 12, 2005
    Publication date: November 3, 2005
    Inventors: Younes Achkire, Alexander Lerner, Boris Govzman, Boris Fishkin, Michael Sugarman, Rashid Mavleiv, Haoquan Fang, Shijian Li, Guy Shirazi, Jianshe Tang
  • Publication number: 20050229426
    Abstract: In a first aspect, a first method of drying a substrate is provided. The first method includes the steps of (1) lifting a substrate through an air/fluid interface at a first rate; (2) directing a drying vapor at the air/fluid interface during lifting of the substrate; and (3) while a portion of the substrate remains in the air/fluid interface, reducing a rate at which a remainder of the substrate is lifted through the air/fluid interface to a second rate. The drying vapor may form an angle of about 23° with the air/fluid interface and/or the second rate may be about 2.5 mm/sec.
    Type: Application
    Filed: February 9, 2005
    Publication date: October 20, 2005
    Inventors: Younes Achkire, Alexander Lerner, Boris Govzman, Boris Fishkin, Michael Sugarman, Rashid Mavliev, Haoquan Fang, Shijian Li, Guy Shirazi, Jianshe Tang
  • Patent number: 6955516
    Abstract: In a first aspect, a module is provided that is adapted to process a wafer. The module includes a processing portion having one or more features such as (1) a rotatable wafer support for rotating an input wafer from a first orientation wherein the wafer is in line with a load port to a second orientation wherein the wafer is in line with an unload port; (2) a catcher adapted to contact and travel passively with a wafer as it is unloaded from the processing portion; (3) an enclosed output portion adapted to create a laminar air flow from one side thereof to the other; (4) an output portion having a plurality of wafer receivers; (5) submerged fluid nozzles; and/or (6) drying gas flow deflectors, etc. Other aspects include methods of wafer processing.
    Type: Grant
    Filed: November 1, 2002
    Date of Patent: October 18, 2005
    Assignee: Applied Materials, Inc.
    Inventors: Younes Achkire, Alexander Lerner, Boris T. Govzman, Boris Fishkin, Michael Sugarman, Rashid Mavliev, Haoquan Fang, Shijian Li, Guy Shirazi, Jianshe Tang
  • Patent number: 6746544
    Abstract: A method and apparatus for cleaning, rinsing and Marangoni drying substrates is provided. A line of fluid is sprayed along a substrate surface forming an air/fluid interface line, and a line of drying vapor is supplied to the interface line to achieve Marangoni drying. Thus, a large portion of the substrate is simultaneously dried. A preferred apparatus employs a tank of cleaning and/or rinsing fluid. Above the tank fluid a source of rinsing fluid directs rinsing fluid to the surface of a substrate forming a meniscus on the substrate surface as the substrate is lifted from the cleaning fluid, and a drying vapor source directs drying vapor to the meniscus. The drying vapor lowers the surface tension of the meniscus, inducing a Marangoni flow of rinsing fluid from the substrate's surface, and thereby drying the substrate. The cleaning fluid tank has a substrate receiving and cleaning portion and a substrate rinsing portion.
    Type: Grant
    Filed: October 25, 2001
    Date of Patent: June 8, 2004
    Assignee: Applied Materials Inc.
    Inventors: Boris Fishkin, Michael Sherrard
  • Publication number: 20040055625
    Abstract: A method and apparatus for cleaning, rinsing and Marangoni drying substrates is provided. A line of fluid is sprayed along a substrate surface forming an air/fluid interface line, and a line of drying vapor is supplied to the interface line to achieve Marangoni drying. Thus, a large portion of the substrate is simultaneously dried. A preferred apparatus employs a tank of cleaning and/or rinsing fluid. Above the tank fluid a source of rinsing fluid directs rinsing fluid to the surface of a substrate forming a meniscus on the substrate surface as the substrate is lifted from the cleaning fluid, and a drying vapor source directs drying vapor to the meniscus. The drying vapor lowers the surface tension of the meniscus, inducing a Marangoni flow of rinsing fluid from the substrate's surface, and thereby drying the substrate. The cleaning fluid tank has a substrate receiving and cleaning portion and a substrate rinsing portion.
    Type: Application
    Filed: September 22, 2003
    Publication date: March 25, 2004
    Applicant: Applied Materials, Inc.
    Inventors: Boris Fishkin, Michael Sherrard
  • Publication number: 20030121170
    Abstract: In a first aspect, a module is provided that is adapted to process a wafer. The module includes a processing portion having one or more features such as (1) a rotatable wafer support for rotating an input wafer from a first orientation wherein the wafer is in line with a load port to a second orientation wherein the wafer is in line with an unload port; (2) a catcher adapted to contact and travel passively with a wafer as it is unloaded from the processing portion; (3) an enclosed output portion adapted to create a laminar air flow from one side thereof to the other; (4) an output portion having a plurality of wafer receivers; (5) submerged fluid nozzles; and/or (6) drying gas flow deflectors, etc. Other aspects include methods of wafer processing.
    Type: Application
    Filed: November 1, 2002
    Publication date: July 3, 2003
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Younes Achkire, Alexander Lerner, Boris T. Govzman, Boris Fishkin, Michael Sugarman, Rashid Mavliev, Haoquan Fang, Shijian Li, Guy Shirazi
  • Publication number: 20030010364
    Abstract: An improved method and apparatus for adjusting chemistry concentrations and temperatures within a substrate processing tank is provided. A first aspect may include checking the fluid level within the tank, and, if the level is higher than a predetermined upper level, bleeding an amount of fluid from the tank; if the level is lower than a predetermined lower level, flowing an amount of fluid to the tank, and if the level is between the predetermined upper and lower levels, bleeding an amount of fluid from the tank and flowing an amount of fluid to the tank. A second aspect may include flowing water into the tank at a flow rate at least equivalent to the flow rate of water required to achieve a chemistry spike of a predetermined concentration and volume prior to beginning the flow of chemicals. A third aspect may include a method and apparatus for heating or cooling chemistry to a predetermined temperature as the chemistry is recirculated.
    Type: Application
    Filed: August 30, 2002
    Publication date: January 16, 2003
    Inventors: Alexander Lerner, Brian J. Brown, Boris Fishkin, Jonathan S. Frankel
  • Publication number: 20020189643
    Abstract: A method and an apparatus that uses a surfactant to clean a hydrophobic wafer is provided. In a first aspect, the method may clean and dry a wafer without applying pure DI water to the wafer. In a second aspect, the method may clean a wafer by applying pure DI water to the wafer only for a short duration of time such that the DI water application ceases prior to or as soon as a surfactant solution is rinsed from the wafer thereafter the wafer is dried. In a further aspect a hydrophobic wafer is maintained wetted with surfactant as it is transferred between cleaning apparatuses and is rinsed via diluted surfactant or via a brief DI water spray and is thereafter dried.
    Type: Application
    Filed: August 21, 2002
    Publication date: December 19, 2002
    Inventors: Yufei Chen, Brian J. Brown, Boris Fishkin, Fred C. Redeker
  • Patent number: 6468362
    Abstract: A method and an apparatus that uses a surfactant to clean a hydrophobic wafer is provided. In a first aspect, the method may clean and dry a wafer without applying pure DI water to the wafer. In a second aspect, the method may clean a wafer by applying pure DI water to the wafer only for a short duration of time such that the DI water application ceases prior to or as soon as a surfactant solution is rinsed from the wafer thereafter the wafer is dried. In a further aspect a hydrophobic wafer is maintained wetted with surfactant as it is transferred between cleaning apparatuses and is rinsed via diluted surfactant or via a brief DI water spray and is thereafter dried.
    Type: Grant
    Filed: August 23, 2000
    Date of Patent: October 22, 2002
    Assignee: Applied Materials, Inc.
    Inventors: Youfel Chen, Brian J Brown, Boris Fishkin, Fred C Redeker
  • Patent number: 6464799
    Abstract: An improved method and apparatus for adjusting chemistry concentrations and temperatures within a substrate processing tank is provided. A first aspect may include checking the fluid level within the tank, and, if the level is higher than a predetermined upper level, bleeding an amount of fluid from the tank; if the level is lower than a predetermined lower level, flowing an amount of fluid to the tank, and if the level is between the predetermined upper and lower levels, bleeding an amount of fluid from the tank and flowing an amount of fluid to the tank. A second aspect may include flowing water into the tank at a flow rate at least equivalent to the flow rate of water required to achieve a chemistry spike of a predetermined concentration and volume prior to beginning the flow of chemicals. A third aspect may include a method and apparatus for heating or cooling chemistry to a predetermined temperature as the chemistry is recirculated.
    Type: Grant
    Filed: May 30, 2000
    Date of Patent: October 15, 2002
    Assignee: Applied Materials, Inc.
    Inventors: Alexander Lerner, Brian J. Brown, Boris Fishkin, Jonathan S. Frankel