Patents by Inventor Brad Eaton

Brad Eaton has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130288474
    Abstract: Methods for fabricating dual damascene interconnect structures are provided herein. In some embodiments, a method for fabricating a dual damascene interconnect structure may include etching a via into a substrate through a first photoresist layer; patterning a second photoresist layer atop the substrate to define a trench pattern, wherein the via is aligned within the trench pattern, and wherein a portion of undeveloped photoresist remains in the via after patterning; and etching the trench into the substrate to form a dual damascene pattern in the substrate.
    Type: Application
    Filed: April 27, 2012
    Publication date: October 31, 2013
    Applicant: APPLIED MATERIALS, INC.
    Inventors: ROHIT MISHRA, JAYAGATAN R. VIJAYEN, KHALID M. SIRAJUDDIN, BRAD EATON, MADHAVA RAO YALAMANCHILI
  • Publication number: 20130280890
    Abstract: Laser and plasma etch wafer dicing using UV-curable adhesive films is described. In an example, a method includes forming a mask above the semiconductor wafer. The semiconductor wafer is coupled to a carrier substrate by a UV-curable adhesive film. The mask covers and protects the integrated circuits. The mask is patterned with a laser scribing process to provide a patterned mask with gaps. The patterning exposes regions of the semiconductor wafer between the integrated circuits. The semiconductor wafer is then etched through the gaps in the patterned mask to form singulated integrated circuits. The UV-curable adhesive film is then irradiated with ultra-violet (UV) light. The singulated integrated circuits are then detached from the carrier substrate.
    Type: Application
    Filed: March 20, 2013
    Publication date: October 24, 2013
    Inventors: Wei-Sheng Lei, Mohammad K. Chowdhury, Todd Egan, Brad Eaton, Madhava Rao Yalamanchili, Ajay Kumar
  • Patent number: 8557682
    Abstract: Methods of dicing substrates having a plurality of ICs. A method includes forming a multi-layered mask comprising a first mask material layer soluble in a solvent over the semiconductor substrate and a second mask material layer, insoluble in the solvent, over the first mask material layer. The multi-layered mask is patterned with a laser scribing process to provide a patterned mask with gaps. The patterning exposes regions of the substrate between the ICs. The substrate is then plasma etched through the gaps in the patterned mask to singulate the IC with the second mask material layer protecting the first mask material layer for at least a portion of the plasma etch. The soluble material layer is dissolved subsequent to singulation to remove the multi-layered mask.
    Type: Grant
    Filed: June 15, 2011
    Date of Patent: October 15, 2013
    Assignee: Applied Materials, Inc.
    Inventors: James M. Holden, Wei-Sheng Lei, Brad Eaton, Todd Egan, Saravjeet Singh
  • Patent number: 8557683
    Abstract: Methods of dicing substrates by both laser scribing and plasma etching. A method includes laser ablating material layers, the ablating leading with a first irradiance and following with a second irradiance, lower than the first. Multiple passes of a beam adjusted to have different fluence level or multiple laser beams having various fluence levels may be utilized to ablate mask and IC layers to expose a substrate with the first fluence level and then clean off redeposited materials from the trench bottom with the second fluence level. A laser scribe apparatus employing a beam splitter may provide first and second beams of different fluence from a single laser.
    Type: Grant
    Filed: July 11, 2011
    Date of Patent: October 15, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Wei-Sheng Lei, Brad Eaton, Madhava Rao Yalamanchili, Saravjeet Singh, Ajay Kumar, James M. Holden
  • Publication number: 20130267076
    Abstract: Methods of dicing semiconductor wafers, each wafer having a plurality of integrated circuits, are described. A method includes forming a mask above the semiconductor wafer. The mask is composed of a layer covering and protecting the integrated circuits. The mask is patterned with a multi-step laser scribing process to provide a patterned mask with gaps. The patterning exposes regions of the semiconductor wafer between the integrated circuits. The semiconductor wafer is then etched through the gaps in the patterned mask to singulate the integrated circuits.
    Type: Application
    Filed: March 27, 2013
    Publication date: October 10, 2013
    Inventors: Wei-Sheng Lei, Brad Eaton, Madhava Rao Yalamanchili, Saravjeet Singh, Ajay Kumar
  • Patent number: 8507363
    Abstract: Methods of dicing semiconductor wafers, each wafer having a plurality of integrated circuits, are described. A method includes forming a mask above the semiconductor wafer. The semiconductor wafer is disposed on a water-soluble die attach film. The mask covers and protects the integrated circuits. The mask is patterned with a laser scribing process to provide a patterned mask with gaps. The patterning exposes regions of the semiconductor wafer between the integrated circuits. The semiconductor wafer is then etched through the gaps in the patterned mask to form singulated integrated circuits. The water-soluble die attach film is then patterned with an aqueous solution.
    Type: Grant
    Filed: June 15, 2011
    Date of Patent: August 13, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Wei-Sheng Lei, Madhava Rao Yalamanchili, Brad Eaton, Saravjeet Singh, Ajay Kumar
  • Publication number: 20130017668
    Abstract: Methods of dicing semiconductor wafers, each wafer having a plurality of integrated circuits, are described. A method includes forming a mask above the semiconductor wafer. The mask is composed of a layer covering and protecting the integrated circuits. The mask is patterned with a split-beam laser scribing process to provide a patterned mask with gaps. The patterning exposes regions of the semiconductor wafer between the integrated circuits. The semiconductor wafer is then etched through the gaps in the patterned mask to singulate the integrated circuits.
    Type: Application
    Filed: July 11, 2011
    Publication date: January 17, 2013
    Inventors: Wei-Sheng Lei, Brad Eaton, Madhava Rao Yalamanchili, Saravjeet Singh, Ajay Kumar, Aparna Iyer
  • Publication number: 20120322237
    Abstract: Methods of dicing semiconductor wafers, each wafer having a plurality of integrated circuits, are described. A method includes forming a mask above the semiconductor wafer. The mask covers and protects the integrated circuits. The mask is patterned with a laser scribing process to provide a patterned mask with gaps. The patterning exposes regions of the semiconductor wafer between the integrated circuits. The semiconductor wafer is then etched through the gaps in the patterned mask to form singulated integrated circuits. The patterned mask is then separated from the singulated integrated circuits.
    Type: Application
    Filed: June 15, 2011
    Publication date: December 20, 2012
    Inventors: Wei-Sheng Lei, Saravjeet Singh, Madhava Rao Yalamanchili, Brad Eaton, Ajay Kumar
  • Publication number: 20120322233
    Abstract: Methods of dicing substrates having a plurality of ICs. A method includes forming a mask comprising a water soluble material layer over the semiconductor substrate. The mask is patterned with a femtosecond laser scribing process to provide a patterned mask with gaps. The patterning exposes regions of the substrate between the ICs. The substrate is then etched through the gaps in the patterned mask to singulate the IC and the water soluble material layer washed off.
    Type: Application
    Filed: June 15, 2011
    Publication date: December 20, 2012
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Wei-Sheng LEI, Saravjeet SINGH, Madhava Rao Yalamanchili, Brad EATON, Ajay KUMAR
  • Publication number: 20120322236
    Abstract: Methods of dicing semiconductor wafers, each wafer having a plurality of integrated circuits, are described. A method includes forming a mask above the semiconductor wafer. The mask is composed of a layer covering and protecting the integrated circuits. The mask is patterned with a pulse train laser scribing process using multiple-pulse bursts to provide a patterned mask with gaps. The patterning exposes regions of the semiconductor wafer between the integrated circuits. The semiconductor wafer is then etched through the gaps in the patterned mask to singulate the integrated circuits.
    Type: Application
    Filed: June 15, 2011
    Publication date: December 20, 2012
    Inventors: Wei-Sheng Lei, Saravjeet Singh, Madhava Rao Yalamanchili, Brad Eaton, Ajay Kumar
  • Publication number: 20120322239
    Abstract: Methods of dicing semiconductor wafers, each wafer having a plurality of integrated circuits, are described. A method includes forming a mask above the semiconductor wafer, the mask composed of a layer covering and protecting the integrated circuits. The semiconductor wafer is supported by a substrate carrier. The mask is then patterned with a laser scribing process to provide a patterned mask with gaps, exposing regions of the semiconductor wafer between the integrated circuits. The semiconductor wafer is then etched through the gaps in the patterned mask to singulate the integrated circuits while supported by the substrate carrier.
    Type: Application
    Filed: June 15, 2011
    Publication date: December 20, 2012
    Inventors: Saravjeet Singh, Brad Eaton, Ajay Kumar, Wei-Sheng Lei, James M. Holden, Madhava Rao Yalamanchili, Todd J. Egan
  • Publication number: 20120322238
    Abstract: Methods of dicing semiconductor wafers, each wafer having a plurality of integrated circuits, are described. A method includes forming a mask above the semiconductor wafer. The semiconductor wafer is disposed on a water-soluble die attach film. The mask covers and protects the integrated circuits. The mask is patterned with a laser scribing process to provide a patterned mask with gaps. The patterning exposes regions of the semiconductor wafer between the integrated circuits. The semiconductor wafer is then etched through the gaps in the patterned mask to form singulated integrated circuits. The water-soluble die attach film is then patterned with an aqueous solution.
    Type: Application
    Filed: June 15, 2011
    Publication date: December 20, 2012
    Inventors: Wei-Sheng Lei, Madhava Rao Yalamanchili, Brad Eaton, Saravjeet Singh, Ajay Kumar
  • Publication number: 20120322234
    Abstract: Methods of dicing substrates by both laser scribing and plasma etching. A method includes forming an in-situ mask with a plasma etch chamber by accumulating a thickness of plasma deposited polymer to protect IC bump surfaces from a subsequent plasma etch. Second mask materials, such as a water soluble mask material may be utilized along with the plasma deposited polymer. At least some portion of the mask is patterned with a femtosecond laser scribing process to provide a patterned mask with trenches. The patterning exposing regions of the substrate between the ICs in which the substrate is plasma etched to singulate the IC and the water soluble material layer washed off.
    Type: Application
    Filed: June 15, 2011
    Publication date: December 20, 2012
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Madhava Rao YALAMANCHILI, Wei-Sheng LEI, Brad EATON, Saravjeet SINGH, Ajay KUMAR, Banqiu WU
  • Publication number: 20120322241
    Abstract: Methods of dicing substrates having a plurality of ICs. A method includes forming a multi-layered mask comprising a first mask material layer soluble in a solvent over the semiconductor substrate and a second mask material layer, insoluble in the solvent, over the first mask material layer. The multi-layered mask is patterned with a laser scribing process to provide a patterned mask with gaps. The patterning exposes regions of the substrate between the ICs. The substrate is then plasma etched through the gaps in the patterned mask to singulate the IC with the second mask material layer protecting the first mask material layer for at least a portion of the plasma etch. The soluble material layer is dissolved subsequent to singulation to remove the multi-layered mask.
    Type: Application
    Filed: June 15, 2011
    Publication date: December 20, 2012
    Applicant: APPLIED MATERIALS, INC.
    Inventors: James M. HOLDEN, Wei-Sheng LEI, Brad EATON, Todd EGAN, Saravjeet SINGH
  • Publication number: 20120322235
    Abstract: Methods of dicing semiconductor wafers, each wafer having a plurality of integrated circuits, are described. A method includes forming a mask above the semiconductor wafer. The mask is composed of a layer covering and protecting the integrated circuits. The mask is patterned with a galvanic laser scribing process to provide a patterned mask with gaps. The patterning exposes regions of the semiconductor wafer between the integrated circuits. The semiconductor wafer is then etched through the gaps in the patterned mask to singulate the integrated circuits.
    Type: Application
    Filed: June 15, 2011
    Publication date: December 20, 2012
    Inventors: Wei-Sheng Lei, Saravjeet Singh, Madhava Rao Yalamanchili, Brad Eaton, Ajay Kumar
  • Publication number: 20120322242
    Abstract: Methods of dicing substrates by both laser scribing and plasma etching. A method includes laser ablating material layers, the ablating leading with a first irradiance and following with a second irradiance, lower than the first. Multiple passes of a beam adjusted to have different fluence level or multiple laser beams having various fluence levels may be utilized to ablate mask and IC layers to expose a substrate with the first fluence level and then clean off redeposited materials from the trench bottom with the second fluence level. A laser scribe apparatus employing a beam splitter may provide first and second beams of different fluence from a single laser.
    Type: Application
    Filed: July 11, 2011
    Publication date: December 20, 2012
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Wei-Sheng LEI, Brad EATON, Madhava Rao YALAMANCHILI, Saravjeet SINGH, Ajay KUMAR, James M. HOLDEN
  • Publication number: 20110312157
    Abstract: Methods of dicing semiconductor wafers, each wafer having a plurality of integrated circuits, are described. A method includes forming a mask above the semiconductor wafer. The mask is composed of a layer covering and protecting the integrated circuits. The mask is patterned with a femtosecond-based laser scribing process to provide a patterned mask with gaps. The patterning exposes regions of the semiconductor wafer between the integrated circuits. The semiconductor wafer is then etched through the gaps in the patterned mask to singulate the integrated circuits.
    Type: Application
    Filed: June 15, 2011
    Publication date: December 22, 2011
    Inventors: Wei-Sheng Lei, Brad Eaton, Madhava Rao Yalamanchili, Saravjeet Singh, Ajay Kumar, James M. Holden
  • Publication number: 20090139657
    Abstract: A semiconductor processing system includes a factory interface. A central transfer chamber is coupled to the factory interface. A first number of etch chambers are coupled to the central transfer chamber. The first number of etch chambers are configured to etch a substrate at about a first processing time. A second number of post-etch treatment chambers are coupled to the central transfer chamber. The second number of post-etch treatment chambers are configured to process the substrate at about a second processing time, wherein a ratio of the first number to the second number is substantially proportional to a ratio of the first processing time to the second processing time.
    Type: Application
    Filed: September 10, 2008
    Publication date: June 4, 2009
    Applicant: Applied Materials, Inc.
    Inventors: CHANGHUN LEE, Brad Eaton, Diana X. Ma