Patents by Inventor Bret Street

Bret Street has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20070287216
    Abstract: Methods for manufacturing microelectronic imaging units and microelectronic imaging units that are formed using such methods are disclosed herein. In one embodiment, a method includes providing a plurality of imaging dies on a microfeature workpiece. The individual imaging dies include an image sensor, an integrated circuit operably coupled to the image sensor, and a plurality of external contacts operably coupled to the integrated circuit. The method further includes attaching a plurality of covers to corresponding imaging dies, cutting the microfeature workpiece to singulate the imaging dies, and coupling the singulated dies to a support member. The covers can be attached to the imaging dies before or after the workpiece is cut.
    Type: Application
    Filed: August 15, 2007
    Publication date: December 13, 2007
    Inventors: James Derderian, Bret Street, Eric Mueller
  • Publication number: 20070148818
    Abstract: A method of electrically connecting corresponding contact pads of semiconductor device components to each other includes interconnecting first and second members of an interconnection element. The first and second members respectively protrude from first and second semiconductor device components, with a conductive element of each member in communication with a contact pad of its corresponding semiconductor device component. Each member of the interconnection element also includes an insulative coating, or shell. When the first and second member of an interconnection element are interconnected, the insulative coating, or shell, may substantially cover or encase the conductive elements of the interconnection element.
    Type: Application
    Filed: February 20, 2007
    Publication date: June 28, 2007
    Inventors: Vernon Williams, Ford Grigg, Bret Street
  • Publication number: 20070148817
    Abstract: A method for fabricating an electrical interconnection element, or conductive structure, includes disposing a jacket of a first member of the electrical interconnection element laterally around a contact of a semiconductor device structure and introducing conductive material into the jacket. The jacket, which may be electrically insulative, may include a plurality of adjacent, mutually adhered regions. Such regions may be formed by programmed material consolidation processes, such as stereolithography, in which material is selectively consolidated in a manner controlled by a program. The first member is configured to interconnect with a second member of the electrical interconnection element, which may be secured to and electrically communicate with a contact of another semiconductor device component.
    Type: Application
    Filed: February 20, 2007
    Publication date: June 28, 2007
    Inventors: Vernon Williams, Ford Grigg, Bret Street
  • Publication number: 20070117249
    Abstract: Microelectronic imaging units and methods for manufacturing microelectronic imaging units are disclosed herein. In one embodiment, a method includes placing a plurality of singulated imaging dies on a support member. The individual imaging dies include an image sensor, an integrated circuit operably coupled to the image sensor, and a plurality of external contacts operably coupled to the integrated circuit. The method further includes disposing a plurality of discrete stand-offs on the support member. The discrete stand-offs are arranged in arrays relative to corresponding imaging dies. The method further includes electrically connecting the external contacts of the imaging dies to corresponding terminals on the support member, and attaching a plurality of covers to corresponding stand-off arrays so that the covers are positioned over the image sensors.
    Type: Application
    Filed: January 17, 2007
    Publication date: May 24, 2007
    Inventors: Frank Hall, William Reeder, Bret Street, James Derderian
  • Publication number: 20070114646
    Abstract: A die package having an adhesive flow restriction area. In a first embodiment, the adhesive flow restriction area is formed as a trench in a transparent element. A second embodiment has a transparent element with an adhesive flow restriction area formed as a plurality of trenches that extend from one edge of the transparent element to the other edge. A third embodiment has a transparent element with an adhesive flow restriction area formed as a plurality of trenches. A fourth embodiment has a transparent element with an adhesive flow restriction area formed as a protuberance. A fifth embodiment comprises a trench in the die. A sixth embodiment has a die with a plurality of trenches in the die as an adhesive flow restriction area. A seventh embodiment has a die with a protuberance.
    Type: Application
    Filed: January 18, 2007
    Publication date: May 24, 2007
    Inventors: Bret Street, James Derderian, Jeremy Minnich
  • Publication number: 20070034979
    Abstract: Methods for manufacturing microelectronic imaging units and microelectronic imaging units that are formed using such methods are disclosed herein. In one embodiment, a method includes coupling a plurality of singulated imaging dies to a support member. The individual imaging dies include an image sensor, an integrated circuit operably coupled to the image sensor, and a plurality of external contacts operably coupled to the integrated circuit. The method further includes forming a plurality of stand-offs on corresponding imaging dies before and/or after the imaging dies are singulated and electrically connecting the external contacts of the imaging dies to corresponding terminals on the support member. The individual stand-offs include a portion between adjacent external contacts.
    Type: Application
    Filed: October 19, 2006
    Publication date: February 15, 2007
    Inventors: James Derderian, Bret Street, Eric Mueller
  • Publication number: 20060223207
    Abstract: Methods for manufacturing microelectronic imaging units and microelectronic imaging units that are formed using such methods are disclosed herein. In one embodiment, a method includes providing a plurality of imaging dies on a microfeature workpiece. The individual imaging dies include an image sensor, an integrated circuit operably coupled to the image sensor, and a plurality of external contacts operably coupled to the integrated circuit. The method further includes attaching a plurality of covers to corresponding imaging dies, cutting the microfeature workpiece to singulate the imaging dies, and coupling the singulated dies to a support member. The covers can be attached to the imaging dies before or after the workpiece is cut.
    Type: Application
    Filed: June 7, 2006
    Publication date: October 5, 2006
    Inventors: James Derderian, Bret Street, Eric Mueller
  • Publication number: 20060216850
    Abstract: Methods for manufacturing microelectronic imaging units and microelectronic imaging units that are formed using such methods are disclosed herein. In one embodiment, a method for manufacturing a plurality of microelectronic imaging units includes placing a plurality of singulated imaging dies on a support member. The individual imaging dies include a first height, an image sensor, an integrated circuit operably coupled to the image sensor, and a plurality of external contacts operably coupled to the integrated circuit. The method further includes electrically connecting the external contacts of the imaging dies to corresponding terminals on the support member and forming a base on the support member between adjacent imaging dies. The base has a second height less than or approximately equal to the first height of the dies. The method further includes attaching a plurality of covers to the base so that the covers are positioned over corresponding image sensors.
    Type: Application
    Filed: June 1, 2006
    Publication date: September 28, 2006
    Inventors: Bret Street, Frank Hall, James Derderian
  • Publication number: 20060079011
    Abstract: A method used for marking a semiconductor wafer or device. The method and apparatus have particular application to wafers or devices which have been subjected to a thinning process, including back grinding in particular. The present method comprises reducing the cross-section of a wafer or device, applying a tape having optical energy-markable properties over a surface or edge of the wafer or device, and exposing the tape to an optical energy source to create an identifiable mark. A method for manufacturing an integrated circuit chip and for identifying a known good die are also disclosed. The apparatus of the present invention comprises a multilevel laser-markable tape for application to a bare semiconductor die. In the apparatus, an adhesive layer of the tape provides a homogenous surface for marking subsequent to exposure to electromagnetic radiation.
    Type: Application
    Filed: November 18, 2005
    Publication date: April 13, 2006
    Inventors: William Tandy, Bret Street
  • Publication number: 20060046332
    Abstract: Methods for manufacturing microelectronic imaging units and microelectronic imaging units that are formed using such methods are disclosed herein. In one embodiment, a method includes providing a plurality of imaging dies on a microfeature workpiece. The individual imaging dies include an image sensor, an integrated circuit operably coupled to the image sensor, and a plurality of external contacts operably coupled to the integrated circuit. The method further includes attaching a plurality of covers to corresponding imaging dies, cutting the microfeature workpiece to singulate the imaging dies, and coupling the singulated dies to a support member. The covers can be attached to the imaging dies before or after the workpiece is cut.
    Type: Application
    Filed: August 26, 2004
    Publication date: March 2, 2006
    Inventors: James Derderian, Bret Street, Eric Mueller
  • Publication number: 20060035402
    Abstract: Methods for manufacturing microelectronic imaging units and microelectronic imaging units that are formed using such methods are disclosed herein. In one embodiment, a method for manufacturing a plurality of microelectronic imaging units includes placing a plurality of singulated imaging dies on a support member. The individual imaging dies include a first height, an image sensor, an integrated circuit operably coupled to the image sensor, and a plurality of external contacts operably coupled to the integrated circuit. The method further includes electrically connecting the external contacts of the imaging dies to corresponding terminals on the support member and forming a base on the support member between adjacent imaging dies. The base has a second height less than or approximately equal to the first height of the dies. The method further includes attaching a plurality of covers to the base so that the covers are positioned over corresponding image sensors.
    Type: Application
    Filed: August 10, 2004
    Publication date: February 16, 2006
    Inventors: Bret Street, Frank Hall, James Derderian
  • Publication number: 20060024856
    Abstract: Methods for manufacturing microelectronic imaging units and microelectronic imaging units that are formed using such methods are disclosed herein. In one embodiment, a method includes coupling a plurality of singulated imaging dies to a support member. The individual imaging dies include an image sensor, an integrated circuit operably coupled to the image sensor, and a plurality of external contacts operably coupled to the integrated circuit. The method further includes forming a plurality of stand-offs on corresponding imaging dies before and/or after the imaging dies are singulated and electrically connecting the external contacts of the imaging dies to corresponding terminals on the support member. The individual stand-offs include a portion between adjacent external contacts.
    Type: Application
    Filed: July 28, 2004
    Publication date: February 2, 2006
    Inventors: James Derderian, Bret Street, Eric Mueller
  • Publication number: 20060014313
    Abstract: Microelectronic imaging units and methods for manufacturing microelectronic imaging units are disclosed herein. In one embodiment, a method includes placing a plurality of singulated imaging dies on a support member. The individual imaging dies include an image sensor, an integrated circuit operably coupled to the image sensor, and a plurality of external contacts operably coupled to the integrated circuit. The method further includes disposing a plurality of discrete stand-offs on the support member. The discrete stand-offs are arranged in arrays relative to corresponding imaging dies. The method further includes electrically connecting the external contacts of the imaging dies to corresponding terminals on the support member, and attaching a plurality of covers to corresponding stand-off arrays so that the covers are positioned over the image sensors.
    Type: Application
    Filed: July 16, 2004
    Publication date: January 19, 2006
    Inventors: Frank Hall, William Reeder, Bret Street, James Derderian
  • Publication number: 20050156266
    Abstract: A die package having an adhesive flow restriction area. In a first embodiment, the adhesive flow restriction area is formed as a trench in a transparent element. A second embodiment has a transparent element with an adhesive flow restriction area formed as a plurality of trenches that extend from one edge of the transparent element to the other edge. A third embodiment has a transparent element with an adhesive flow restriction area formed as a plurality of trenches. A fourth embodiment has a transparent element with an adhesive flow restriction area formed as a protuberance. A fifth embodiment comprises a trench in the die. A sixth embodiment has a die with a plurality of trenches in the die as an adhesive flow restriction area. A seventh embodiment has a die with a protuberance.
    Type: Application
    Filed: September 1, 2004
    Publication date: July 21, 2005
    Inventors: Bret Street, James Derderian, Jeremy Minnich
  • Publication number: 20050151272
    Abstract: A die package having an adhesive flow restriction area. In a first embodiment, the adhesive flow restriction area is formed as a trench in a transparent element. A second embodiment has a transparent element with an adhesive flow restriction area formed as a plurality of trenches that extend from one edge of the transparent element to the other edge. A third embodiment has a transparent element with an adhesive flow restriction area formed as a plurality of trenches. A fourth embodiment has a transparent element with an adhesive flow restriction area formed as a protuberance. A fifth embodiment comprises a trench in the die. A sixth embodiment has a die with a plurality of trenches in the die as an adhesive flow restriction area. A seventh embodiment has a die with a protuberance.
    Type: Application
    Filed: January 6, 2004
    Publication date: July 14, 2005
    Inventors: Bret Street, James Derderian, Jeremy Minnich
  • Publication number: 20050148115
    Abstract: Programmed material consolidation processes for fabricating heat sinks include the selective consolidation of previously unconsolidated material. The heat dissipation element of the heat sink that has been fabricated by such processes can have non-linear or convoluted passageways therethrough to enhance air flow. An optical recognition may be used in conjunction with programmed material consolidation processes to ensure that a heat sink is fabricated or positioned on the appropriate location of an electronic component, such as a semiconductor device.
    Type: Application
    Filed: February 7, 2005
    Publication date: July 7, 2005
    Inventors: Vernon Williams, Bret Street
  • Patent number: 6891108
    Abstract: Semiconductor package support elements including cover members attached to one or more reject die sites. Also, methods for making the support elements and for making semiconductor packages using the same. Reject die sites on defective substrates of a support element are covered prior to the encapsulation process using a cover member. The cover member comprises, for example, pressure-sensitive or temperature-activated tape, reject dies, or the like. The support elements and methods of the present invention virtually eliminate bleeding or flashing during encapsulation due to the presence of reject die sites. The support elements and methods of the present invention further ensure that functional dice are not sacrificed by being attached to reject die sites, thereby decreasing manufacturing costs while increasing yield of functional semiconductor packages.
    Type: Grant
    Filed: October 4, 2001
    Date of Patent: May 10, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Casey Prindiville, Tongbi Jiang, Bret Street
  • Patent number: 6858927
    Abstract: Semiconductor package support elements including cover members attached to one or more reject die sites are provided. Methods for making the support elements of the present invention and for making semiconductor packages using the same are also provided. Reject die sites on defective substrates of a support element are covered prior to the encapsulation process using a cover member. The cover member comprises, for example, pressure sensitive or temperature-activated tape, reject dies, or the like. The support elements and methods of the present invention virtually eliminate bleeding or flashing during encapsulation due to the presence of reject die sites. The support elements and methods of the present invention further ensure that functional dice are not sacrificed by being attached to reject die sites, thereby decreasing manufacturing costs while increasing yield of functional semiconductor packages.
    Type: Grant
    Filed: October 4, 2001
    Date of Patent: February 22, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Casey Prindiville, Tongbi Jiang, Bret Street
  • Publication number: 20050029554
    Abstract: A BGA and a system implementing a BGA. Specifically, a BGA package is encapsulated after the balls are attached to the package. The backside of the package having the balls disposed thereon may be completely covered by the encapsulant. The encapsulant is disposed in direct contact about a portion of the balls. A liner is provided to facilitate the formation of an unencapsulated portion of each ball. The unencapsulated portion may be used to couple the package to a system.
    Type: Application
    Filed: August 31, 2004
    Publication date: February 10, 2005
    Inventors: William Stephenson, Bret Street, Todd Bolken
  • Publication number: 20050024080
    Abstract: Flip-chip semiconductor assemblies, each including integrated circuit (IC) dice and an associated substrate, are electrically tested before encapsulation using an in-line or in-situ test socket or probes at a die-attach station. Those assemblies using “wet” quick-cure epoxies for die attachment may be tested prior to the epoxy being cured by pressing the integrated circuit (IC) dice against interconnection points on the substrate for electrical connection, while those assemblies using “dry” epoxies may be cured prior to testing. In either case, any failures in the dice or in the interconnections between the dice and the substrates can be easily fixed, and the need for the use of known-good-die (KGD) rework procedures during repair is eliminated.
    Type: Application
    Filed: August 25, 2004
    Publication date: February 3, 2005
    Inventors: Chad Cobbley, John VanNortwick, Bret Street, Tongbi Jiang