Patents by Inventor Brian Greene
Brian Greene has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12166031Abstract: Substrate-less electrostatic discharge (ESD) integrated circuit structures, and methods of fabricating substrate-less electrostatic discharge (ESD) integrated circuit structures, are described. For example, a substrate-less integrated circuit structure includes a first fin and a second fin protruding from a semiconductor pedestal. An N-type region is in the first and second fins. A P-type region is in the semiconductor pedestal. A P/N junction is between the N-type region and the P-type region, the P/N junction on or in the semiconductor pedestal.Type: GrantFiled: December 22, 2020Date of Patent: December 10, 2024Assignee: Intel CorporationInventors: Biswajeet Guha, Brian Greene, Daniel Schulman, William Hsu, Chung-Hsun Lin, Curtis Tsai, Kevin Fischer
-
Patent number: 12154898Abstract: Substrate-less vertical diode integrated circuit structures, and methods of fabricating substrate-less vertical diode integrated circuit structures, are described. For example, a substrate-less integrated circuit structure includes a semiconductor fin in a dielectric layer, the semiconductor fin having a top and a bottom, and the dielectric layer having a top surface and a bottom surface. A first epitaxial semiconductor structure is on the top of the semiconductor fin. A second epitaxial semiconductor structure is on the bottom of the semiconductor fin. A first conductive contact is on the first epitaxial semiconductor structure. A second conductive contact is on the second epitaxial semiconductor structure.Type: GrantFiled: December 23, 2020Date of Patent: November 26, 2024Assignee: Intel CorporationInventors: Avyaya Jayanthinarasimham, Brian Greene, Suresh Vishwanath
-
Patent number: 12130842Abstract: Methods and apparatus consistent with the invention provide the ability to organize and build understandings of machine data generated by a variety of information-processing environments. Machine data is a product of information-processing systems (e.g., activity logs, configuration files, messages, database records) and represents the evidence of particular events that have taken place and been recorded in raw data format. In one embodiment, machine data is turned into a machine data web by organizing machine data into events and then linking events together.Type: GrantFiled: March 3, 2023Date of Patent: October 29, 2024Assignee: Cisco Technology, Inc.Inventors: Michael Joseph Baum, R. David Carasso, Robin Kumar Das, Bradley Hall, Brian Philip Murphy, Stephen Phillip Sorkin, Andre David Stechert, Erik M. Swan, Rory Greene, Nicholas Christian Mealy, Christina Frances Regina Noren
-
Publication number: 20240334669Abstract: An apparatus comprising a source or drain of a field effect transistor (FET), a first dielectric between a portion of the source or drain and a FET gate, the first dielectric comprising silicon nitride, and a second dielectric above at least a portion of the first dielectric, the second dielectric comprising silicon oxide doped with at least one of oxygen or carbon, the second dielectric having a dielectric constant lower than the first dielectric.Type: ApplicationFiled: March 31, 2023Publication date: October 3, 2024Applicant: Intel CorporationInventors: Chiao-Ti Huang, Akitomo Matsubayashi, Brian Greene, Chung-Hsun Lin
-
Publication number: 20240290835Abstract: Fabrication methods that employ an etch stop layer to assist subfin removal during fabrication of nanoribbon-based transistors are disclosed. An example fabrication method includes providing a stack of nanoribbons above a subfin, where the nanoribbons and the subfin include one or more semiconductor materials; depositing an etch stop layer over a top of the subfin and around portions of the nanoribbons; removing the etch stop layer from around the portions of the nanoribbons; providing a gate dielectric material around the portions of the nanoribbons and over the etch stop layer over the top of the subfin; depositing a gate electrode material around the portions of the nanoribbons; and performing an etch to remove the subfin without substantially removing the etch stop layer.Type: ApplicationFiled: February 24, 2023Publication date: August 29, 2024Applicant: Intel CorporationInventors: Chiao-Ti Huang, Guowei Xu, Tao Chu, Robin Chao, Jaladhi Mehta, Brian Greene, Chung-Hsun Lin
-
Publication number: 20240222447Abstract: An integrated circuit includes a first device, and a laterally adjacent second device. The first device includes a first body of semiconductor material extending laterally from a first source or drain region, a first gate structure on the first body, and a first contact extending vertically upward from the first source or drain region. The second device includes a second body of semiconductor material extending laterally from a second source or drain region, a second gate structure on the second body, and a second contact extending vertically upward from the second source or drain region. A gate cut structure including dielectric material is laterally between the first gate structure and the second gate structure, and also laterally between the first contact and the second contact. In some examples, a third contact extends laterally from the first contact to the second contact and passes over the gate cut structure.Type: ApplicationFiled: December 28, 2022Publication date: July 4, 2024Applicant: Intel CorporationInventors: Reken Patel, Conor P. Puls, Krishna Ganesan, Akitomo Matsubayashi, Diana Ivonne Paredes, Sunzida Ferdous, Brian Greene, Lateef Uddin Syed, Kyle T. Horak, Lin Hu, Anupama Bowonder, Swapnadip Ghosh, Amritesh Rai, Shruti Subramanian, Gordon S. Freeman
-
Publication number: 20240178273Abstract: Integrated circuit structures having source or drain contacts with enhanced contact area, and methods of fabricating integrated circuit structures having source or drain contacts with enhanced contact area, are described. For example, an integrated circuit structure includes a plurality of horizontally stacked nanowires. A gate structure is over the plurality of horizontally stacked nanowires. An epitaxial source or drain structure is at an end of the plurality of horizontally stacked nanowires. A conductive contact structure is vertically over the epitaxial source or drain structure. The conductive contact structure has a lower portion extending over the top and along upper portions of sides of the epitaxial source or drain structure, and has an upper portion on the lower portion. The upper portion has a maximum lateral width less than a maximum lateral width of the lower portion.Type: ApplicationFiled: November 30, 2022Publication date: May 30, 2024Inventors: Chiao-Ti HUANG, Tao CHU, Guowei XU, Chung-Hsun LIN, Brian Greene
-
Publication number: 20240140625Abstract: Described herein are unmanned aerial vehicles (UAVs), systems, and methods for capturing panoramic images using cameras onboard a UAV. For example, an embodiment pertains to a UAV including a flight control system, a propulsion system operatively coupled with the flight control system, and an image system comprising navigational cameras and a gimbal camera. The image system is configured to capture a first set of images of a scene using the navigational cameras, stitch the first set of images together to create a first panoramic image of the scene, identify a flight plan for capturing a second set of images with which to create a second panoramic image of the scene using the gimbal camera, capture the second set of images of the scene using the gimbal camera, and stitch the second set of images together to create the second panoramic image.Type: ApplicationFiled: November 1, 2023Publication date: May 2, 2024Inventors: James Anthony Ferrandini, Noah Brian Greene, Charles VanSchoonhoven Wood, Saumya Pravinbhai Shah, Shreyas Arora, Kristen Marie Holtz
-
Publication number: 20240088132Abstract: An integrated circuit structure includes a sub-fin having (i) a first portion including a p-type dopant and (ii) a second portion including an n-type dopant. A first body of semiconductor material is above the first portion of the sub-fin, and a second body of semiconductor material is above the second portion of the sub-fin. In an example, the first portion of the sub-fin and the second portion of the sub-fin are in contact with each other, to form a PN junction of a diode. For example, the first portion of the sub-fin is part of an anode of the diode, and wherein the second portion of the sub-fin is part of a cathode of the diode.Type: ApplicationFiled: September 13, 2022Publication date: March 14, 2024Applicant: Intel CorporationInventors: Nicholas A. Thomson, Kalyan C. Kolluru, Ayan Kar, Chu-Hsin Liang, Benjamin Orr, Biswajeet Guha, Brian Greene, Chung-Hsun Lin, Sabih U. Omar, Sameer Jayanta Joglekar
-
Patent number: 11869987Abstract: Gate-all-around integrated circuit structures including varactors are described. For example, an integrated circuit structure includes a varactor structure on a semiconductor substrate. The varactor structure includes a plurality of discrete vertical arrangements of horizontal nanowires. A plurality of gate stacks is over and surrounding corresponding ones of the plurality of discrete vertical arrangements of horizontal nanowires. The integrated circuit structure also includes a tap structure adjacent to the varactor structure on the semiconductor substrate. The tap structure includes a plurality of merged vertical arrangements of horizontal nanowires. A plurality of semiconductor structures is over and surrounding corresponding ones of the plurality of merged vertical arrangements of horizontal nanowires.Type: GrantFiled: July 7, 2022Date of Patent: January 9, 2024Assignee: Intel CorporationInventors: Ayan Kar, Saurabh Morarka, Carlos Nieva-Lozano, Kalyan Kolluru, Biswajeet Guha, Chung-Hsun Lin, Brian Greene, Tahir Ghani
-
Publication number: 20230420443Abstract: Integrated circuit (IC) devices with diodes formed in a subfin between a support structure of an IC device and one or more nanoribbon stacks are disclosed. To alleviate challenges of limited semiconductor cross-section provided by the subfin, etch depths in the subfin (i.e., depths of recesses in the subfin formed as a part of forming the diodes) are selectively optimized and varied. Deeper recesses are made in subfin portions at which diode terminals (e.g., anodes and cathodes) are formed, to increase the semiconductor cross-section in those portions, thus providing improved subfin contacts. Shallower recesses (or no recesses) are made in subfin portion between the diode terminals, to increase subfin retention. Thus, subfin diodes may be provided in a manner that enables improved diode conductance and/or improved current carrying capabilities while advantageously using substantially the same etch processes as those used for forming nanoribbon-based transistors elsewhere in the IC device.Type: ApplicationFiled: June 27, 2022Publication date: December 28, 2023Inventors: Nicholas A. Thomson, Ayan Kar, Kalyan C. Kolluru, Benjamin John Orr, Chu-Hsin Liang, Biswajeet Guha, Saptarshi Mandal, Brian Greene, Sameer Jayanta Joglekar, Chung-Hsun Lin, Mauro J. Kobrinsky
-
Publication number: 20230317808Abstract: Embodiments of the present disclosure include integrated circuit structures having differentiated channel sizing, and methods of fabricating integrated circuit structures having differentiated channel sizing. In an example, a structure includes a memory region having a first vertical stack of horizontal nanowires having a first number of nanowires. The integrated circuit structure also includes a logic region having a second vertical stack of horizontal nanowires spaced apart from the first vertical stack of horizontal nanowires. The second vertical stack of horizontal nanowires has a second number of nanowires less than the first number of nanowires.Type: ApplicationFiled: March 21, 2022Publication date: October 5, 2023Inventors: Rishabh MEHANDRU, Cory WEBER, Clifford ONG, Sukru YEMENICIOGLU, Tahir GHANI, Brian GREENE
-
Publication number: 20230317594Abstract: Embodiments disclosed herein include a semiconductor device. In an embodiment, the semiconductor device comprises a substrate and a transistor over the substrate. In an embodiment, the transistor comprises a source, a gate, and a drain. In an embodiment, the semiconductor device further comprises a first metal layer above the transistor, where the first metal layer comprises, a source metal coupled to the source, a drain metal coupled to the drain, and a gate metal coupled to the gate. In an embodiment, the source metal, the drain metal, and the gate metal are parallel conductive lines. In an embodiment, a backside via passes through the substrate, and a contact metal in the first metal layer is coupled to the backside via. In an embodiment, the contact metal is oriented orthogonal to the source metal.Type: ApplicationFiled: March 31, 2022Publication date: October 5, 2023Inventors: Tao CHU, Minwoo JANG, Aurelia WANG, Conor P. PULS, Lin HU, Jaladhi MEHTA, Brian GREENE, Chung-Hsun LIN, Walid M. HAFEZ, Paul PACKAN
-
Publication number: 20230307449Abstract: An integrated circuit includes a first source region, a first drain region, a first fin having (i) a first upper region laterally between the first source region and the first drain region and (ii) a first lower region below the first upper region, and a first gate structure on at least top and side surfaces of the first upper region. The integrated circuit further includes a second source region, a second drain region, a second fin having (i) a second upper region laterally between the second source region and the second drain region and (ii) a second lower region below the second upper region, and a second gate structure on at least top and side surfaces of the second upper region. In an example, a first vertical height of the first lower region is different from a second vertical height of the second lower region by at least 2 nanometers (nm).Type: ApplicationFiled: March 25, 2022Publication date: September 28, 2023Applicant: Intel CorporationInventors: Tao Chu, Minwoo Jang, Aurelia Chi Wang, Conor Puls, Brian Greene, Tofizur Rahman, Lin Hu, Jaladhi Mehta, Chung-Hsun Lin, Walid Hafez
-
Publication number: 20230071699Abstract: A transistor structure includes a channel region including first sidewall. A gate electrode includes a first layer having a first portion adjacent to the first sidewall and a second portion adjacent to a gate electrode boundary sidewall. The gate electrode includes a second layer between the first and second portions of the first layer. The first layer has a first composition associated with a first work function material, and has a first lateral thickness from the first sidewall. The second layer has a second composition associated with a second work function material. Depending one a second lateral thickness of the second layer, the second layer may modulate a threshold voltage (VT) of the transistor structure by more or less. In some embodiments, a ratio of the second lateral thickness to the first lateral thickness is less than three.Type: ApplicationFiled: September 9, 2021Publication date: March 9, 2023Applicant: Intel CorporationInventors: Andrew Smith, Brian Greene, Seonghyun Paik, Omair Saadat, Chung-Hsun Lin, Tahir Ghani
-
Publication number: 20220415925Abstract: Substrate-less lateral diode integrated circuit structures, and methods of fabricating substrate-less lateral diode integrated circuit structures, are described. For example, a substrate-less integrated circuit structure includes a fin or a stack of nanowires. A plurality of P-type epitaxial structures is over the fin or stack of nanowires. A plurality of N-type epitaxial structures is over the fin or stack of nanowires. One or more spacings are in locations over the fin or stack of nanowires, a corresponding one of the one or more spacings extending between neighboring ones of the plurality of P-type epitaxial structures and the plurality of N-type epitaxial structures.Type: ApplicationFiled: June 25, 2021Publication date: December 29, 2022Inventors: Nicholas THOMSON, Kalyan KOLLURU, Ayan KAR, Rui MA, Benjamin ORR, Nathan JACK, Biswajeet GUHA, Brian GREENE, Lin HU, Chung-Hsun LIN
-
Publication number: 20220415881Abstract: Substrate-less silicon controlled rectifier (SCR) integrated circuit structures, and methods of fabricating substrate-less silicon controlled rectifier (SCR) integrated circuit structures, are described. For example, a substrate-less integrated circuit structure includes a first fin portion and a second fin portion that meet at a junction. A plurality of gate structures is over the first fin portion and a second fin portion. A plurality of P-type epitaxial structures and N-type epitaxial structures is between corresponding adjacent ones of the plurality of gate structures. Pairs of the P-type epitaxial structures alternate with pairs of the N-type epitaxial structures.Type: ApplicationFiled: June 24, 2021Publication date: December 29, 2022Inventors: Rui MA, Kalyan KOLLURU, Nicholas THOMSON, Ayan KAR, Benjamin ORR, Nathan JACK, Biswajeet GUHA, Brian GREENE, Chung-Hsun LIN
-
Publication number: 20220416022Abstract: Substrate-less nanowire-based lateral diode integrated circuit structures, and methods of fabricating substrate-less nanowire-based lateral diode integrated circuit structures, are described. For example, a substrate-less integrated circuit structure includes a stack of nanowires. A plurality of P-type epitaxial structures is over the stack of nanowires. A plurality of N-type epitaxial structures is over the stack of nanowires. One or more gate structures is over the stack of nanowires. A semiconductor material is between and in contact with vertically adjacent ones of the stack of nanowires.Type: ApplicationFiled: June 24, 2021Publication date: December 29, 2022Inventors: Nicholas THOMSON, Kalyan KOLLURU, Ayan KAR, Rui MA, Benjamin ORR, Nathan JACK, Biswajeet GUHA, Brian GREENE, Lin HU, Chung-Hsun LIN, Sabih OMAR
-
Publication number: 20220344519Abstract: Gate-all-around integrated circuit structures including varactors are described. For example, an integrated circuit structure includes a varactor structure on a semiconductor substrate. The varactor structure includes a plurality of discrete vertical arrangements of horizontal nanowires. A plurality of gate stacks is over and surrounding corresponding ones of the plurality of discrete vertical arrangements of horizontal nanowires. The integrated circuit structure also includes a tap structure adjacent to the varactor structure on the semiconductor substrate. The tap structure includes a plurality of merged vertical arrangements of horizontal nanowires. A plurality of semiconductor structures is over and surrounding corresponding ones of the plurality of merged vertical arrangements of horizontal nanowires.Type: ApplicationFiled: July 7, 2022Publication date: October 27, 2022Inventors: Ayan KAR, Saurabh MORARKA, Carlos NIEVA-LOZANO, Kalyan KOLLURU, Biswajeet GUHA, Chung-Hsun LIN, Brian GREENE, Tahir GHANI
-
Publication number: 20220296941Abstract: The present invention relates to the field of firefighter facial masks. More specifically, the present invention relates to a firefighter respirator mask device that is preferably comprised of a body, a facial covering over an opening of an SCBA mask, a fastening mechanism and a filter. The body of the device preferably resembles an ovular shape, or any shape that sufficiently covers the hole left over the mouth of an SCBA mask when not attached to an oxygenated hose, normally present under hazardous conditions. The device is comprised of color-changing technology that allows the facial mask to turn colors in response to pathogenic exposure, indicating to the user that it is no longer sterile. In this manner, the device can be applied to any firefighter or industrial worker requiring the use of an SCBA without risk of possible pathogenic exposure when not attached to an oxygenated hose.Type: ApplicationFiled: December 29, 2021Publication date: September 22, 2022Inventor: Brian Greene