Patents by Inventor Bruce J. Chamberlin

Bruce J. Chamberlin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180106718
    Abstract: A process of in-situ detection of hollow fiber formation includes immersing a plurality of individual glass fibers in an index-matching material. The index-matching material has a first refractive index that substantially matches a second refractive index of the glass fibers. The process also includes exposing the individual glass fibers to a light source during immersion in the index-matching material. The process further includes utilizing one or more optical components to collect optical data for the individual glass fibers during immersion in the index-matching material. The process also includes determining, based on the optical data, that a particular glass fiber of the plurality of individual glass fibers includes a hollow fiber.
    Type: Application
    Filed: September 15, 2017
    Publication date: April 19, 2018
    Inventors: ERIC J. CAMPBELL, BRUCE J. CHAMBERLIN, SARAH K. CZAPLEWSKI, SCOTT B. KING, JOSEPH KUCZYNSKI
  • Publication number: 20180023225
    Abstract: A glass fiber cloth includes a first warp glass fiber, a second warp glass fiber, and a weft glass fiber. The second warp glass fiber is adjacent to the first warp glass fiber. The weft glass fiber is overlaid over the first warp glass fiber and the second warp glass fiber. The weft glass fiber is attached to the first warp glass fiber.
    Type: Application
    Filed: July 21, 2016
    Publication date: January 25, 2018
    Inventors: Bruce J. Chamberlin, Scott B. King, Joseph Kuczynski, David J. Russell
  • Patent number: 9863875
    Abstract: A process of in-situ detection of hollow fiber formation includes immersing a plurality of individual glass fibers in an index-matching material. The index-matching material has a first refractive index that substantially matches a second refractive index of the glass fibers. The process also includes exposing the individual glass fibers to a light source during immersion in the index-matching material. The process further includes utilizing one or more optical components to collect optical data for the individual glass fibers during immersion in the index-matching material. The process also includes determining, based on the optical data, that a particular glass fiber of the plurality of individual glass fibers includes a hollow fiber.
    Type: Grant
    Filed: October 19, 2016
    Date of Patent: January 9, 2018
    Assignee: International Business Machines Corporation
    Inventors: Eric J. Campbell, Bruce J. Chamberlin, Sarah K. Czaplewski, Scott B. King, Joseph Kuczynski
  • Patent number: 9839131
    Abstract: Embedding a discrete electrical device in a printed circuit board (PCB) includes: providing a vertical via as a blind hole from a horizontal surface of the PCB to an electrically conductive structure in a first layer, the first layer being one layer of a first core section of a plurality of core sections vertically arranged above each other, each core section including lower and upper conductive layers, and a non-conductive layer in between; inserting the electrical device into the via, with the device extending within at least two of the core sections; establishing a first electrical connection between a first electrical device contact device and the electrically conductive structure in the first layer; and establishing a second electrical connection between a second electrical device contact and a second layer, the second layer being one of the electrically conductive layers of a second horizontal core section.
    Type: Grant
    Filed: October 21, 2015
    Date of Patent: December 5, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Bruce J. Chamberlin, Andreas Huber, Harald Huels, Thomas Strach, Thomas-Michael Winkel
  • Publication number: 20170118842
    Abstract: Embedding a discrete electrical device in a printed circuit board (PCB) includes: providing a vertical via as a blind hole from a horizontal surface of the PCB to an electrically conductive structure in a first layer, the first layer being one layer of a first core section of a plurality of core sections vertically arranged above each other, each core section including lower and upper conductive layers, and a non-conductive layer in between; inserting the electrical device into the via, with the device extending within at least two of the core sections; establishing a first electrical connection between a first electrical device contact device and the electrically conductive structure in the first layer; and establishing a second electrical connection between a second electrical device contact and a second layer, the second layer being one of the electrically conductive layers of a second horizontal core section.
    Type: Application
    Filed: October 21, 2015
    Publication date: April 27, 2017
    Inventors: Bruce J. CHAMBERLIN, Andreas HUBER, Harald HUELS, Thomas STRACH, Thomas-Michael WINKEL
  • Publication number: 20170118844
    Abstract: Embedding a discrete electrical device in a printed circuit board (PCB) includes: providing a vertical via as a blind hole from a horizontal surface of the PCB to an electrically conductive structure in a first layer, the first layer being one layer of a first core section of a plurality of core sections vertically arranged above each other, each core section including lower and upper conductive layers, and a non-conductive layer in between; inserting the electrical device into the via, with the device extending within at least two of the core sections; establishing a first electrical connection between a first electrical device contact device and the electrically conductive structure in the first layer; and establishing a second electrical connection between a second electrical device contact and a second layer, the second layer being one of the electrically conductive layers of a second horizontal core section.
    Type: Application
    Filed: June 7, 2016
    Publication date: April 27, 2017
    Inventors: Bruce J. CHAMBERLIN, Andreas HUBER, Harald HUELS, Thomas STRACH, Thomas-Michael WINKEL
  • Publication number: 20160330834
    Abstract: An enhanced substrate for use in printed circuit boards (PCBs) includes low-Dk-core glass fibers having low dielectric constant (Dk) cores. In some embodiments, the low-Dk-core glass fibers are filled with a low Dk fluid, such as a gas (e.g., air, nitrogen and/or a noble gas) or a liquid. After via holes are drilled or otherwise formed in the substrate, silane is applied to the ends of hollow glass fibers exposed in the via holes to seal the low Dk fluid within the cores of the hollow glass fibers. In some embodiments, the low-Dk-core glass fibers are filled with a solid (e.g., a low Dk resin). For example, a hollow glass fiber may be provided, and then filled with a low Dk resin in a liquid state. The low Dk resin within the hollow glass fiber is then cured to a solid state.
    Type: Application
    Filed: July 15, 2016
    Publication date: November 10, 2016
    Inventors: Bruce J. Chamberlin, Joseph Kuczynski, Paula M. Nixa
  • Patent number: 9456496
    Abstract: An enhanced substrate for use in printed circuit boards (PCBs) includes low-Dk-core glass fibers having low dielectric constant (Dk) cores. In some embodiments, the low-Dk-core glass fibers are filled with a low Dk fluid, such as a gas (e.g., air, nitrogen and/or a noble gas) or a liquid. After via holes are drilled or otherwise formed in the substrate, silane is applied to the ends of hollow glass fibers exposed in the via holes to seal the low Dk fluid within the cores of the hollow glass fibers. In some embodiments, the low-Dk-core glass fibers are filled with a solid (e.g., a low Dk resin). For example, a hollow glass fiber may be provided, and then filled with a low Dk resin in a liquid state. The low Dk resin within the hollow glass fiber is then cured to a solid state.
    Type: Grant
    Filed: February 12, 2015
    Date of Patent: September 27, 2016
    Assignee: International Business Machines Corporation
    Inventors: Bruce J. Chamberlin, Joseph Kuczynski, Paula M. Nixa
  • Publication number: 20160270240
    Abstract: Manufacturing a product, wherein the product includes a first part and a second part, wherein the first part includes solder pins and the second part includes solder pads, wherein each of the solder pins has the matching solder pad, wherein each of the solder pads is covered by a matching solder paste bead. Aligning the solder pins against the solder pads in a way that each pair of the solder pin and the matching solder pad is thermally and electrically connected by the matching solder paste bead. Connecting a mating connector to the first part, wherein the mating connector is operable for providing a part of an electrical conducting path.
    Type: Application
    Filed: May 19, 2016
    Publication date: September 15, 2016
    Inventors: Bruce J. CHAMBERLIN, Andreas HUBER, Harald HUELS, Thomas-Michael WINKEL
  • Publication number: 20160242280
    Abstract: An enhanced substrate for use in printed circuit boards (PCBs) includes low-Dk-core glass fibers having low dielectric constant (Dk) cores. In some embodiments, the low-Dk-core glass fibers are filled with a low Dk fluid, such as a gas (e.g., air, nitrogen and/or a noble gas) or a liquid. After via holes are drilled or otherwise formed in the substrate, silane is applied to the ends of hollow glass fibers exposed in the via holes to seal the low Dk fluid within the cores of the hollow glass fibers. In some embodiments, the low-Dk-core glass fibers are filled with a solid (e.g., a low Dk resin). For example, a hollow glass fiber may be provided, and then filled with a low Dk resin in a liquid state. The low Dk resin within the hollow glass fiber is then cured to a solid state.
    Type: Application
    Filed: February 12, 2015
    Publication date: August 18, 2016
    Inventors: Bruce J. Chamberlin, Joseph Kuczynski, Paula M. Nixa
  • Patent number: 9398702
    Abstract: Manufacturing a product, wherein the product includes a first part and a second part, wherein the first part includes solder pins and the second part includes solder pads, wherein each of the solder pins has the matching solder pad, wherein each of the solder pads is covered by a matching solder paste bead. Aligning the solder pins against the solder pads in a way that each pair of the solder pin and the matching solder pad is thermally and electrically connected by the matching solder paste bead. Connecting a mating connector to the first part, wherein the mating connector is operable for providing a part of an electrical conducting path. Heating at least one of the solder paste beads by an electrical resistive heating, wherein the electrical resistive heating is generated by an electrical current flowing through the electrical conducting path.
    Type: Grant
    Filed: May 20, 2014
    Date of Patent: July 19, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Bruce J. Chamberlin, Andreas Huber, Harald Huels, Thomas-Michael Winkel
  • Publication number: 20140345123
    Abstract: Manufacturing a product, wherein the product includes a first part and a second part, wherein the first part includes solder pins and the second part includes solder pads, wherein each of the solder pins has the matching solder pad, wherein each of the solder pads is covered by a matching solder paste bead. Aligning the solder pins against the solder pads in a way that each pair of the solder pin and the matching solder pad is thermally and electrically connected by the matching solder paste bead. Connecting a mating connector to the first part, wherein the mating connector is operable for providing a part of an electrical conducting path.
    Type: Application
    Filed: May 20, 2014
    Publication date: November 27, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Bruce J. Chamberlin, Andreas Huber, Harald Huels, Thomas-Michael Winkel
  • Publication number: 20140285979
    Abstract: A printed circuit board and method of manufacturing same, the printed circuit board comprising a stack of layers. The stack of layers being comprised of alternating circuit layers and insulating layers that are laminated together. The stack of layers includes an area with resin cured to a degree. The area has a coefficient of thermal expansion that is dependent, at least in part, on the degree of curing of the resin.
    Type: Application
    Filed: March 25, 2013
    Publication date: September 25, 2014
    Applicant: International Business Machines Corporation
    Inventors: Bruce J. Chamberlin, Joseph P. Kuczynski, Paula M. Nixa
  • Patent number: 7856341
    Abstract: Sensors are located on first and second regions of a heat sink, with a portion of the heat sink interposed between the first and second region sensors. The heat sink is connected to a component by an attachment that conducts heat from the component to the heat sink, and a third sensor is located on the component or the attachment with a portion of the attachment disposed between the third sensor and the first and second heat sink region sensors. Temperature readings from the sensors are compared to identify a failing one of the heat sink, the attachment portion, and the component with respect to heat conduction, which includes identifying the interposed heat sink portion as failing in response to a divergence between temperature inputs from the first and second heat sink region sensors. Rate-of-rise temperature readings may also be observed and compared, including to historical values.
    Type: Grant
    Filed: February 19, 2008
    Date of Patent: December 21, 2010
    Assignee: International Business Machines Corporation
    Inventors: Brian L. Carlson, Bruce J. Chamberlin, Mark K. Hoffmeyer, Ahmad D. Katnani, Matthew S. Kelly, Gregory S. Killinger, Eric V. Kline, Wayne J. Rothschild, Jeffrey A. Taylor
  • Patent number: 7795724
    Abstract: An LGA structure is provided having at least one semiconductor device over a substrate and a mechanical load apparatus over the semiconductor device. The structure includes a load-distributing material between the mechanical load apparatus and the substrate. Specifically, the load-distributing material is proximate a first side of the semiconductor device and a second side of the semiconductor device opposite the first side of the semiconductor device. Furthermore, the load-distributing material completely surrounds the semiconductor device and contacts the mechanical load apparatus, the substrate, and the semiconductor device. The load-distributing material can be thermally conductive and comprises an elastomer and/or a liquid. The load-distributing material comprises a LGA interposer adapted to connect the substrate to a PCB below the substrate and/or a second substrate. Moreover, the load-distributing material comprises compressible material layers and rigid material layers.
    Type: Grant
    Filed: August 30, 2007
    Date of Patent: September 14, 2010
    Assignee: International Business Machines Corporation
    Inventors: William L. Brodsky, James A. Busby, Bruce J. Chamberlin, Mitchell G. Ferrill, David L. Questad, Robin A. Susko
  • Patent number: 7742315
    Abstract: The present invention relates to computer hardware design, and in particular to a printed circuit board (card) comprising wiring dedicated to supply electric board components such as integrated circuits with at least three different reference planes. In particular at locations, where the pins of a card-to-card connector enter the layer structure of the card discontinuities brake the high frequency signal return path of a given signal wiring. In order to close the signal return path around a signal path from card to card including the connector, and thus to limit the signal coupling while concurrently keeping the card design as simple as possible, it is proposed to provide a) an additional capacitance for a given signal wiring in a discontinuity section, b) wherein the additional capacitance is formed by a voltage island placed within a signal layer located next to the given signal wiring.
    Type: Grant
    Filed: November 17, 2005
    Date of Patent: June 22, 2010
    Assignee: International Business Machines Corporation
    Inventors: Wiren D. Becker, Bruce J. Chamberlin, Gerald J. Fahr, Roland Frech, Dierk Kaller, George Katopis, Erich Klink, Thomas-Michael Winkel
  • Patent number: 7709951
    Abstract: Methods, apparatus and assemblies for enhancing heat transfer in electronic components using a flexible thermal pillow. The flexible thermal pillow has a thermally conductive material sealed between top and bottom conductive layers, with the bottom layer having a flexible reservoir residing on opposing sides of a central portion of the pillow that has a gap. The pillow may have roughened internal surfaces to increase an internal surface area within the pillow for enhanced heat dissipation. In an electronic assembly, the central portion of the pillow resides between a heat sink and heat-generating component for the thermal coupling there-between. During thermal cycling, the flexible reservoir of the pillow expands to retain thermally conductive material extruded from the gap, and then contracts to force such extruded material back into the gap. An external pressure source may contact the pillow for further forcing the extruded thermally conductive material back into the gap.
    Type: Grant
    Filed: March 16, 2007
    Date of Patent: May 4, 2010
    Assignee: International Business Machines Corporation
    Inventors: William L. Brodsky, Peter J. Brofman, James A. Busby, Bruce J. Chamberlin, Scott A. Cummings, David L. Edwards, Thomas J. Fleischman, Michael J. Griffin, IV, Sushumna Iruvanti, David C. Long, Jennifer V. Muncy, Robin A. Susko
  • Publication number: 20090210190
    Abstract: Where an attachment means connects a heat sink to a system component, heat is thereby conducted to the heat sink from the component, a temperature sensor is located on the heat sink and another on the component or the attachment means, a portion of the attachment means is disposed between the sensors. Temperature readings from the sensors are compared to identify a failing one of the heat sink, the attachment means portion, and the component, with respect to heat conduction. Corrective action may be identified, and self-power means may also be provided to supply operative power. A wireless output circuit may be provided. Multiple heat sink sensors may be provided in any element. Rate-of-rise temperature readings may be observed and compared, including to historical values.
    Type: Application
    Filed: February 19, 2008
    Publication date: August 20, 2009
    Applicant: International Business Machine Corporation
    Inventors: Brian L. Carlson, Bruce J. Chamberlin, Mark K. Hoffmeyer, Ahmad D. Katnani, Matthew S. Kelly, Gregory S. Killinger, Eric V. Kline, Wayne J. Rothschild, Jeffrey A. Taylor
  • Publication number: 20090057865
    Abstract: An LGA structure is provided having at least one semiconductor device over a substrate and a mechanical load apparatus over the semiconductor device. The structure includes a load-distributing material between the mechanical load apparatus and the substrate. Specifically, the load-distributing material is proximate a first side of the semiconductor device and a second side of the semiconductor device opposite the first side of the semiconductor device. Furthermore, the load-distributing material completely surrounds the semiconductor device and contacts the mechanical load apparatus, the substrate, and the semiconductor device. The load-distributing material can be thermally conductive and comprises an elastomer and/or a liquid. The load-distributing material comprises a LGA interposer adapted to connect the substrate to a PCB below the substrate and/or a second substrate. Moreover, the load-distributing material comprises compressible material layers and rigid material layers.
    Type: Application
    Filed: August 30, 2007
    Publication date: March 5, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: William L. Brodsky, James A. Busby, Bruce J. Chamberlin, Mitchell G. Ferrill, David L. Questad, Robin A. Susko
  • Publication number: 20080225484
    Abstract: Methods, apparatus and assemblies for enhancing heat transfer in electronic components using a flexible thermal pillow. The flexible thermal pillow has a thermally conductive material sealed between top and bottom conductive layers, with the bottom layer having a flexible reservoir residing on opposing sides of a central portion of the pillow that has a gap. The pillow may have roughened internal surfaces to increase an internal surface area within the pillow for enhanced heat dissipation. In an electronic assembly, the central portion of the pillow resides between a heat sink and heat-generating component for the thermal coupling there-between. During thermal cycling, the flexible reservoir of the pillow expands to retain thermally conductive material extruded from the gap, and then contracts to force such extruded material back into the gap. An external pressure source may contact the pillow for further forcing the extruded thermally conductive material back into the gap.
    Type: Application
    Filed: March 16, 2007
    Publication date: September 18, 2008
    Applicant: International Business Machines Corporation
    Inventors: William L. Brodsky, Peter J. Brofman, James A. Busby, Bruce J. Chamberlin, Scott A. Cummings, David L. Edwards, Thomas J. Fleischman, Michael J. Griffin, Sushumna Iruvanti, David C. Long, Jennifer V. Muncy, Robin A. Susko