Patents by Inventor Bruce M. Green

Bruce M. Green has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9362198
    Abstract: An embodiment of a semiconductor device includes a semiconductor substrate that includes a host substrate and an upper surface, an active area, a substrate opening in the semiconductor substrate that is partially defined by a recessed surface, and a thermally conductive layer disposed over the semiconductor substrate that extends between the recessed surface and a portion of the semiconductor substrate within the active area. A method for fabricating the semiconductor device includes defining an active area, forming a gate electrode over a channel in the active area, forming a source electrode and a drain electrode in the active area on opposite sides of the gate electrode, etching a substrate opening in the semiconductor substrate that is partially defined by the recessed surface, and depositing a thermally conductive layer over the semiconductor substrate that extends between the recessed surface and a portion of the semiconductor substrate over the channel.
    Type: Grant
    Filed: April 10, 2014
    Date of Patent: June 7, 2016
    Assignee: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Lakshminarayan Viswanathan, Bruce M. Green, Darrell G. Hill, L M Mahalingam
  • Patent number: 9281204
    Abstract: A semiconductor device is provided which includes a GaN-on-SiC substrate (50-51) and a multi-layer passivation stack (52-54) in which patterned step openings (76) are defined and filled with gate metal layers using a lift-off gate metal process to form a T-gate electrode (74) as a stepped gate electrode having sidewall extensions and a contact base portion with one or more gate ledges.
    Type: Grant
    Filed: April 23, 2014
    Date of Patent: March 8, 2016
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Karen E. Moore, Bruce M. Green
  • Patent number: 9276101
    Abstract: A low leakage current switch device (110) is provided which includes a GaN-on-Si substrate (11-43) covered by a passivation surface layer (43) in which a T-gate electrode with sidewall extensions (48) is formed and coated with a conformal passivation layer (49) so that the T-gate electrode sidewall extensions are spaced apart from the underlying passivation surface layer (43) by the conformal passivation layer (49).
    Type: Grant
    Filed: June 26, 2015
    Date of Patent: March 1, 2016
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Bruce M. Green, Karen E. Moore, Olin Hartin
  • Publication number: 20150381163
    Abstract: An embodiment of a device includes a terminal, an active transistor die electrically coupled to the terminal, a detector configured to sense a signal characteristic on the terminal, and control circuitry electrically coupled to the active transistor die and to the detector, wherein the active transistor die, detector, and control circuitry are coupled to a package. The control circuitry may include a control element and a control device. Based on the signal characteristic, the control circuitry controls which of multiple operating states the device operates. A method for controlling the operating state of the device includes sensing, using the detector, a signal characteristic at the terminal, and determining, using the control device, whether the signal characteristic conforms to a pre-set criteria, and when the signal characteristic does not conform to the pre-set criteria, modifying the state of the control element to alter the operating state of the device.
    Type: Application
    Filed: June 25, 2014
    Publication date: December 31, 2015
    Inventors: BRUCE M. GREEN, Enver Krvavac, Joseph Staudinger
  • Publication number: 20150357452
    Abstract: A semiconductor device includes a semiconductor substrate configured to include a channel, first and second ohmic contacts supported by the semiconductor substrate, in ohmic contact with the semiconductor substrate, and spaced from one another for current flow between the first and second ohmic contacts through the channel, and first and second dielectric layers supported by the semiconductor substrate. At least one of the first and second ohmic contacts extends through respective openings in the first and second dielectric layers. The second dielectric layer is disposed between the first dielectric layer and a surface of the semiconductor substrate, and the second dielectric layer includes a wet etchable material having an etch selectivity to a dry etchant of the first dielectric layer.
    Type: Application
    Filed: August 17, 2015
    Publication date: December 10, 2015
    Inventors: Bruce M. Green, Darrell G. Hill, Jenn Hwa Huang, Karen E. Moore
  • Publication number: 20150311084
    Abstract: A semiconductor device is provided which includes a GaN-on-SiC substrate (50-51) and a multi-layer passivation stack (52-54) in which patterned step openings (76) are defined and filled with gate metal layers using a lift-off gate metal process to form a T-gate electrode (74) as a stepped gate electrode having sidewall extensions and a contact base portion with one or more gate ledges.
    Type: Application
    Filed: April 23, 2014
    Publication date: October 29, 2015
    Applicant: Freescale Semiconductor, Inc.
    Inventors: Karen E. Moore, Bruce M. Green
  • Publication number: 20150294921
    Abstract: An embodiment of a semiconductor device includes a semiconductor substrate that includes a host substrate and an upper surface, an active area, a substrate opening in the semiconductor substrate that is partially defined by a recessed surface, and a thermally conductive layer disposed over the semiconductor substrate that extends between the recessed surface and a portion of the semiconductor substrate within the active area. A method for fabricating the semiconductor device includes defining an active area, forming a gate electrode over a channel in the active area, forming a source electrode and a drain electrode in the active area on opposite sides of the gate electrode, etching a substrate opening in the semiconductor substrate that is partially defined by the recessed surface, and depositing a thermally conductive layer over the semiconductor substrate that extends between the recessed surface and a portion of the semiconductor substrate over the channel.
    Type: Application
    Filed: April 10, 2014
    Publication date: October 15, 2015
    Inventors: LAKSHMINARAYAN VISWANATHAN, Bruce M. Green, Darrell G. Hill, L. M. Mahalingam
  • Publication number: 20150295075
    Abstract: A low leakage current switch device (110) is provided which includes a GaN-on-Si substrate (11-43) covered by a passivation surface layer (43) in which a T-gate electrode with sidewall extensions (48) is formed and coated with a conformal passivation layer (49) so that the T-gate electrode sidewall extensions are spaced apart from the underlying passivation surface layer (43) by the conformal passivation layer (49).
    Type: Application
    Filed: June 26, 2015
    Publication date: October 15, 2015
    Applicant: Freescale Semiconductor, Inc.
    Inventors: Bruce M. Green, Karen E. Moore, Olin Hartin
  • Patent number: 9153448
    Abstract: A semiconductor device includes a semiconductor substrate configured to include a channel, a gate supported by the semiconductor substrate to control current flow through the channel, a first dielectric layer supported by the semiconductor substrate and including an opening in which the gate is disposed, and a second dielectric layer disposed between the first dielectric layer and a surface of the semiconductor substrate in a first area over the channel. The second dielectric layer is patterned such that the first dielectric layer is disposed on the surface of the semiconductor substrate in a second area over the channel.
    Type: Grant
    Filed: January 21, 2015
    Date of Patent: October 6, 2015
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Bruce M. Green, Darrell G. Hill, Jenn Hwa Huang, Karen E. Moore
  • Patent number: 9123645
    Abstract: Embodiments include methods of making semiconductor devices with low leakage Schottky contacts. An embodiment includes providing a partially completed semiconductor device including a substrate, a semiconductor on the substrate, and a passivation layer on the semiconductor, and using a first mask, locally etching the passivation layer to expose a portion of the semiconductor. Without removing the first mask, a Schottky contact is formed of a first material on the exposed portion of the semiconductor, and the mask is removed. Using a further mask, a step-gate conductor of a second material electrically coupled to the Schottky contact is formed overlying parts of the passivation layer adjacent to the Schottky contact. By minimizing the process steps between opening the Schottky contact window in the passivation layer and forming the Schottky contact material in this window, the gate leakage of a resulting field effect device having a Schottky gate may be substantially reduced.
    Type: Grant
    Filed: November 21, 2013
    Date of Patent: September 1, 2015
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Bruce M. Green, Haldane S. Henry, Chun-Li Liu, Karen E. Moore, Matthias Passlack
  • Patent number: 9111868
    Abstract: A semiconductor device includes a semiconductor substrate configured to include a channel, first and second ohmic contacts supported by the semiconductor substrate, in ohmic contact with the semiconductor substrate, and spaced from one another for current flow between the first and second ohmic contacts through the channel, and first and second dielectric layers supported by the semiconductor substrate. At least one of the first and second ohmic contacts extends through respective openings in the first and second dielectric layers. The second dielectric layer is disposed between the first dielectric layer and a surface of the semiconductor substrate, and the second dielectric layer includes a wet etchable material having an etch selectivity to a dry etchant of the first dielectric layer.
    Type: Grant
    Filed: June 26, 2012
    Date of Patent: August 18, 2015
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Bruce M. Green, Darrell G. Hill, Jenn Hwa Huang, Karen E. Moore
  • Patent number: 9099433
    Abstract: A low leakage current switch device (110) is provided which includes a GaN-on-Si substrate (11-13) covered by a passivation surface layer (43) in which a T-gate electrode with sidewall extensions (48) is formed and coated with a conformal passivation layer (49) so that the T-gate electrode sidewall extensions are spaced apart from the underlying passivation surface layer (43) by the conformal passivation layer (49).
    Type: Grant
    Filed: April 23, 2012
    Date of Patent: August 4, 2015
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Bruce M. Green, Karen E. Moore, Olin Hartin
  • Publication number: 20150137135
    Abstract: An embodiment of a semiconductor device includes a semiconductor substrate that includes an upper surface and a channel, a gate electrode disposed over the substrate electrically coupled to the channel, and a Schottky metal layer disposed over the substrate adjacent the gate electrode. The Schottky metal layer includes a Schottky contact electrically coupled to the channel which provides a Schottky junction and at least one alignment mark disposed over the semiconductor substrate. A method for fabricating the semiconductor device includes creating an isolation region that defines an active region along an upper surface of a semiconductor substrate, forming a gate electrode over the semiconductor substrate in the active region, and forming a Schottky metal layer over the semiconductor substrate. Forming the Schottky metal layer includes forming at least one Schottky contact electrically coupled to the channel and providing a Schottky junction, and forming an alignment mark in the isolation region.
    Type: Application
    Filed: November 19, 2013
    Publication date: May 21, 2015
    Inventors: BRUCE M. GREEN, DARRELL G. HILL, KAREN E. MOORE
  • Publication number: 20150132932
    Abstract: A semiconductor device includes a semiconductor substrate configured to include a channel, a gate supported by the semiconductor substrate to control current flow through the channel, a first dielectric layer supported by the semiconductor substrate and including an opening in which the gate is disposed, and a second dielectric layer disposed between the first dielectric layer and a surface of the semiconductor substrate in a first area over the channel. The second dielectric layer is patterned such that the first dielectric layer is disposed on the surface of the semiconductor substrate in a second area over the channel.
    Type: Application
    Filed: January 21, 2015
    Publication date: May 14, 2015
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Bruce M. Green, Darrell G. Hill, Jenn Hwa Huang, Karen E. Moore
  • Patent number: 9029986
    Abstract: Semiconductor devices are provided with dual passivation layers. A semiconductor layer is formed on a substrate and covered by a first passivation layer (PL-1). PL-1 and part of the semiconductor layer are etched to form a device mesa. A second passivation layer (PL-2) is formed over PL-1 and exposed edges of the mesa. Vias are etched through PL-1 and PL-2 to the semiconductor layer where source, drain and gate are to be formed. Conductors are applied in the vias for ohmic contacts for the source-drain and a Schottky contact for the gate. Interconnections over the edges of the mesa couple other circuit elements. PL-1 avoids adverse surface states near the gate and PL-2 insulates edges of the mesa from overlying interconnections to avoid leakage currents. An opaque alignment mark is desirably formed at the same time as the device to facilitate alignment when using transparent semiconductors.
    Type: Grant
    Filed: May 25, 2012
    Date of Patent: May 12, 2015
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Bruce M. Green, Haldane S. Henry
  • Publication number: 20150123168
    Abstract: A semiconductor device includes a substrate comprising a heterostructure configured to support formation of a channel during operation, first and second dielectric layers supported by the substrate, the second dielectric layer being disposed between the first dielectric layer and the substrate, a gate supported by the substrate, disposed in a first opening in the first dielectric layer, and to which a bias voltage is applied during operation to control current flow through the channel, the second dielectric layer being disposed between the gate and the substrate, and an electrode supported by the substrate, disposed in a second opening in the first and second dielectric layers, and configured to establish a Schottky junction with the substrate.
    Type: Application
    Filed: January 12, 2015
    Publication date: May 7, 2015
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Bruce M. Green, James A. Teplik
  • Patent number: 9024324
    Abstract: A low leakage current transistor (2) is provided which includes a GaN-containing substrate (11-14) covered by a passivation surface layer (17) in which a T-gate electrode with sidewall extensions (20) is formed and coated with a multi-level passivation layer (30-32) which includes an intermediate etch stop layer (31) which is used to define a continuous multi-region field plate (33) having multiple distances between the bottom surface of the field plate 33 and the semiconductor substrate in the gate-drain region of the transistor.
    Type: Grant
    Filed: September 5, 2012
    Date of Patent: May 5, 2015
    Assignee: Freescale Semiconductor, Inc.
    Inventors: James A. Teplik, Bruce M. Green
  • Patent number: 8946779
    Abstract: A semiconductor device includes a substrate comprising a heterostructure configured to support formation of a channel during operation, first and second dielectric layers supported by the substrate, the second dielectric layer being disposed between the first dielectric layer and the substrate, a gate supported by the substrate, disposed in a first opening in the first dielectric layer, and to which a bias voltage is applied during operation to control current flow through the channel, the second dielectric layer being disposed between the gate and the substrate, and an electrode supported by the substrate, disposed in a second opening in the first and second dielectric layers, and configured to establish a Schottky junction with the substrate.
    Type: Grant
    Filed: February 26, 2013
    Date of Patent: February 3, 2015
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Bruce M. Green, James A. Teplik
  • Patent number: 8946776
    Abstract: A semiconductor device includes a semiconductor substrate configured to include a channel, a gate supported by the semiconductor substrate to control current flow through the channel, a first dielectric layer supported by the semiconductor substrate and including an opening in which the gate is disposed, and a second dielectric layer disposed between the first dielectric layer and a surface of the semiconductor substrate in a first area over the channel. The second dielectric layer is patterned such that the first dielectric layer is disposed on the surface of the semiconductor substrate in a second area over the channel.
    Type: Grant
    Filed: June 26, 2012
    Date of Patent: February 3, 2015
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Bruce M. Green, Darrell G. Hill, Jenn Hwa Huang, Karen E. Moore
  • Publication number: 20140239346
    Abstract: A semiconductor device includes a substrate comprising a heterostructure configured to support formation of a channel during operation, first and second dielectric layers supported by the substrate, the second dielectric layer being disposed between the first dielectric layer and the substrate, a gate supported by the substrate, disposed in a first opening in the first dielectric layer, and to which a bias voltage is applied during operation to control current flow through the channel, the second dielectric layer being disposed between the gate and the substrate, and an electrode supported by the substrate, disposed in a second opening in the first and second dielectric layers, and configured to establish a Schottky junction with the substrate.
    Type: Application
    Filed: February 26, 2013
    Publication date: August 28, 2014
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Bruce M. Green, James A. Teplik