Patents by Inventor Bryan Kris

Bryan Kris has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8878581
    Abstract: Groups of phase shifted Pulse Width Modulation signals are generated that maintain their duty-cycle and phase relationships as a function of the period of the PWM signal frequency. The multiphase PWM signals are generated in a ratio-metric fashion so as to greatly simplify and reduce the computational workload for a processor used in a PWM system. The groups of phase shifted PWM signals may also be synchronized with and automatically scaled to match external synchronization signals.
    Type: Grant
    Filed: January 27, 2014
    Date of Patent: November 4, 2014
    Assignee: Microchip Technology Incorporated
    Inventor: Bryan Kris
  • Patent number: 8866525
    Abstract: A plurality of PWM generators have user configurable time delay circuits for each PWM control signal generated therefrom. The time delay circuits are adjusted so that each of the PWM control signals arrive at their associated power transistors at the same time. This may be accomplished by determining a maximum delay time of the PWM control signal that has to traverse the longest propagation time and then setting the delay for that PWM control signal to substantially zero delay. Thereafter, all other delay time settings for the other PWM control signals may be determined by subtracting the propagation time for each of the other PWM control signals from the longest propagation time. Thereby insuring that all of the PWM control signals arrive at their respective power transistor control nodes with substantially the same time relationships as when they left their respective PWM generators.
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: October 21, 2014
    Assignee: Microchip Technology Incorporated
    Inventors: Bryan Kris, John Day, Alex Dumais, Stephen Bowling
  • Patent number: 8856406
    Abstract: A microcontroller includes a central processing unit (CPU); a plurality of peripheral units; and a peripheral trigger generator comprising a user programmable state machine, wherein the peripheral trigger generator is configured to receive a plurality of input signals and is programmable to automate timing functions depending on at least one of said input signals and generate at least one output signal.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: October 7, 2014
    Assignee: Microchip Technology Incorporated
    Inventors: Bryan Kris, Michael Catherwood
  • Publication number: 20140266833
    Abstract: A slope compensation module provides slope compensation of a switched-mode power supply using current mode control. This slope compensation function may be provided by a digital slope compensation generator and a pulse density modulated digital-to-analog converter (PDM DAC) having a selectable response mode low pass filter.
    Type: Application
    Filed: March 10, 2014
    Publication date: September 18, 2014
    Inventors: Bryan Kris, Andreas Reiter, Tibor Futo, Alex Dumais
  • Publication number: 20140240020
    Abstract: A plurality of PWM generators have user configurable time delay circuits for each PWM control signal generated therefrom. The time delay circuits are adjusted so that each of the PWM control signals arrive at their associated power transistors at the same time. This may be accomplished by determining a maximum delay time of the PWM control signal that has to traverse the longest propagation time and then setting the delay for that PWM control signal to substantially zero delay. Thereafter, all other delay time settings for the other PWM control signals may be determined by subtracting the propagation time for each of the other PWM control signals from the longest propagation time. Thereby insuring that all of the PWM control signals arrive at their respective power transistor control nodes with substantially the same time relationships as when they left their respective PWM generators.
    Type: Application
    Filed: February 27, 2013
    Publication date: August 28, 2014
    Applicant: MICROCHIP TECHNOLOGY INCORPORATED
    Inventors: Bryan Kris, John Day, Alex Dumais, Stephen Bowling
  • Publication number: 20140229755
    Abstract: Power supply modules have outputs coupled in parallel and convey load share balancing information over a single wire load share bus. Pulse width modulation (PWM) signals represent output loading of each of the power supply modules over the single wire load share bus. The PWM load share signal width (time asserted) of the PWM signal represents the output loading of the respective power supply module. Each of the power supply modules detect the assertion of the PWM signal on the load share bus and then each of them simultaneously drive the load share bus with a PWM signal representing their respective output loading. The power supply module having the greatest percent loading will assert its PWM load share signal longest, and the other power supply modules will thereafter adjust their outputs to more evenly supply power outputs to the load.
    Type: Application
    Filed: February 11, 2013
    Publication date: August 14, 2014
    Applicant: Microchip Technology Incorporated
    Inventor: Bryan Kris
  • Patent number: 8779734
    Abstract: An integrated circuit device has a digital device operating at an internal core voltage; a linear voltage regulator; and an internal switched mode voltage regulator controlled by the digital device and receiving an external supply voltage being higher than the internal core voltage through at least first and second external pins and generating the internal core voltage, wherein the internal switched mode voltage regulator is coupled with at least one external component through at least one further external pin of the plurality of external pins.
    Type: Grant
    Filed: December 7, 2011
    Date of Patent: July 15, 2014
    Assignee: Microchip Technology Incorporated
    Inventors: Bryan Kris, Joseph W. Triece, J. Clark Rogers, Pieter Schieke
  • Patent number: 8762614
    Abstract: An early interrupt feature enables generation of interrupts prior to completion of an analog-to-digital conversion to be used in a processor PID calculation. Even though an analog-to-digital conversion is still in process, the PID application software can use the early interrupt time to begin execution of an interrupt service routine (ISR). The early interrupt can improve the throughput and response time of the PID control loop by overlapping the completion of the ADC conversion with the processor overhead associated with the interrupt request. A plurality of pipelined registers, each having substantially the same delay time as the pipelined stages of the ADC, are selectable to provided a delay time that may be used to generate an early interrupt, wherein the latency time between an ADC conversion and processing of an interrupt relating to that ADC conversion may thereby be shortened.
    Type: Grant
    Filed: December 2, 2011
    Date of Patent: June 24, 2014
    Assignee: Microchip Technology Incorporated
    Inventor: Bryan Kris
  • Publication number: 20140139278
    Abstract: Groups of phase shifted Pulse Width Modulation signals are generated that maintain their duty-cycle and phase relationships as a function of the period of the PWM signal frequency. The multiphase PWM signals are generated in a ratio-metric fashion so as to greatly simplify and reduce the computational workload for a processor used in a PWM system. The groups of phase shifted PWM signals may also be synchronized with and automatically scaled to match external synchronization signals.
    Type: Application
    Filed: January 27, 2014
    Publication date: May 22, 2014
    Inventor: Bryan Kris
  • Publication number: 20140075052
    Abstract: A microcontroller includes a central processing unit (CPU); a plurality of peripheral units; and a peripheral trigger generator comprising a user programmable state machine, wherein the peripheral trigger generator is configured to receive a plurality of input signals and is programmable to automate timing functions depending on at least one of said input signals and generate at least one output signal.
    Type: Application
    Filed: September 13, 2012
    Publication date: March 13, 2014
    Inventors: Bryan Kris, Michael Catherwood
  • Patent number: 8638151
    Abstract: Groups of phase shifted Pulse Width Modulation (PWM) signals are generated that maintain their duty-cycle and phase relationships as a function of the period of the PWM signal frequency. The multiphase PWM signals are generated in a ratio-metric fashion so as to greatly simplify and reduce the computational workload for a processor used in a PWM system. The groups of phase shifted PWM signals may also be synchronized with and automatically scaled to match external synchronization signals.
    Type: Grant
    Filed: September 29, 2011
    Date of Patent: January 28, 2014
    Assignee: Microchip Technology Incorporated
    Inventor: Bryan Kris
  • Patent number: 8558632
    Abstract: Multiple pulse width modulation (PWM) generators each have a separate phase offset counter creating a phase shift. The phase shifting process is separated from the duty cycle generation process, thereby easing the task of preserving the duty cycle and phase relationships among the various PWM channels following an asynchronous external synchronization event. A master time base generates a PWM cycle start signal that resets the phase offset counters in each of the PWM generator circuits. The phase offset counter continues counting until it matches the respective phase offset value. Then, the associated duty cycle counter is reset and restarted. The duty cycle continues until its count matches the specified value at which time the duty cycle counter stops until reset by the terminal count from the phase offset counter. The output of the duty cycle comparators provide the output PWM signals as a repetitive series of single cycle PWM signals.
    Type: Grant
    Filed: September 29, 2011
    Date of Patent: October 15, 2013
    Assignee: Microchip Technology Incorporated
    Inventor: Bryan Kris
  • Patent number: 8472213
    Abstract: Extending pulse width modulation phase offset when generating phase shifted groups of pulse width modulation (PWM) signals is accomplished with a separate phase counter that is independent of the time-base counters used in traditional PWM generation circuits and that is prevented from being retriggered until an existing duty cycle has completed. This is accomplished with a phase offset counter, a phase comparator and a circuit that is triggered via a master time base for overall synchronization of the multi-phase PWM signal generation.
    Type: Grant
    Filed: September 29, 2011
    Date of Patent: June 25, 2013
    Assignee: Microchip Technology Incorporated
    Inventor: Bryan Kris
  • Publication number: 20130147446
    Abstract: An integrated circuit device has a digital device operating at an internal core voltage; a linear voltage regulator; and an internal switched mode voltage regulator controlled by the digital device and receiving an external supply voltage being higher than the internal core voltage through at least first and second external pins and generating the internal core voltage, wherein the internal switched mode voltage regulator is coupled with at least one external component through at least one further external pin of the plurality of external pins.
    Type: Application
    Filed: December 7, 2011
    Publication date: June 13, 2013
    Inventors: Bryan Kris, Joseph W. Triece, J. Clark Rogers, Pieter Schieke
  • Publication number: 20130145066
    Abstract: An early interrupt feature enables generation of interrupts prior to completion of an analog-to-digital conversion to be used in a processor PID calculation. Even though an analog-to-digital conversion is still in process, the PID application software can use the early interrupt time to begin execution of an interrupt service routine (ISR). The early interrupt can improve the throughput and response time of the PID control loop by overlapping the completion of the ADC conversion with the processor overhead associated with the interrupt request. A plurality of pipelined registers, each having substantially the same delay time as the pipelined stages of the ADC, are selectable to provided a delay time that may be used to generate an early interrupt, wherein the latency time between an ADC conversion and processing of an interrupt relating to that ADC conversion may thereby be shortened.
    Type: Application
    Filed: December 2, 2011
    Publication date: June 6, 2013
    Inventor: Bryan Kris
  • Publication number: 20130141058
    Abstract: An integrated circuit device has a housing having a plurality of external pins; a central processing unit (CPU) operating at an internal core voltage and being coupled with the plurality of pins; and an internal switched mode voltage regulator receiving an external supply voltage being higher than the internal core voltage through at least first and second external pins of the plurality of external pins and generating the internal core voltage, wherein the internal switched mode voltage regulator is coupled with at least one external component through at least one further external pin of the plurality of external pins.
    Type: Application
    Filed: December 2, 2011
    Publication date: June 6, 2013
    Inventor: Bryan Kris
  • Patent number: 8432208
    Abstract: Multi-phase, frequency coherent pulse width modulation (PWM) signals are generated that maintain PWM data-set coherency regardless of user or system events. PWM data-set coherency is accomplished by adding data buffers to hold and transfer new PWM data during a data-set update from a processor. After the data-set transfer to the data buffers is complete and when the next PWM cycle is about to start, the data-set stored in the data buffers is transferred to the active PWM registers in time for the start of the next PWM cycle.
    Type: Grant
    Filed: September 28, 2011
    Date of Patent: April 30, 2013
    Assignee: Microchip Technology Incorporated
    Inventor: Bryan Kris
  • Publication number: 20130082747
    Abstract: Groups of phase shifted PWM signals are generated that maintain their duty-cycle and phase relationships as a function of the period of the PWM signal frequency. The multiphase PWM signals are generated in a ratio-metric fashion so as to greatly simplify and reduce the computational workload for a processor used in a PWM system. The groups of phase shifted PWM signals may also be synchronized with and automatically scaled to match external synchronization signals.
    Type: Application
    Filed: September 29, 2011
    Publication date: April 4, 2013
    Inventor: Bryan Kris
  • Publication number: 20130082794
    Abstract: Extending pulse width modulation phase offset when generating phase shifted groups of pulse width modulation (PWM) signals is accomplished with a separate phase counter that is independent of the time-base counters used in traditional PWM generation circuits and that is prevented from being retriggered until an existing duty cycle has completed. This is accomplished with a phase offset counter, a phase comparator and a circuit that is triggered via a master time base for overall synchronization of the multi-phase PWM signal generation.
    Type: Application
    Filed: September 29, 2011
    Publication date: April 4, 2013
    Inventor: Bryan Kris
  • Publication number: 20130082795
    Abstract: Multiple pulse width modulation (PWM) generators each have a separate phase offset counter creating a phase shift. The phase shifting process is separated from the duty cycle generation process, thereby easing the task of preserving the duty cycle and phase relationships among the various PWM channels following an asynchronous external synchronization event. A master time base generates a PWM cycle start signal that resets the phase offset counters in each of the PWM generator circuits. The phase offset counter continues counting until it matches the respective phase offset value. Then, the associated duty cycle counter is reset and restarted. The duty cycle continues until its count matches the specified value at which time the duty cycle counter stops until reset by the terminal count from the phase offset counter. The output of the duty cycle comparators provide the output PWM signals as a repetitive series of single cycle PWM signals.
    Type: Application
    Filed: September 29, 2011
    Publication date: April 4, 2013
    Inventor: Bryan Kris