Patents by Inventor Byoung Gon Yu

Byoung Gon Yu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130302923
    Abstract: Disclosed are an active matrix organic light emitting diode and a method for manufacturing the same. The active matrix organic light emitting diode includes: a substrate; a black matrix formed above a part of the substrate; at least one thin film transistor formed above the black matrix; a passivation film formed to entirely cover the at least one thin film transistor; a planarizing layer formed above the passivation film; a color filter formed above an upper part of the planarizing layer opposite to the position where the at least one thin film transistor is formed; and an organic light emitting diode formed above the color filter.
    Type: Application
    Filed: June 3, 2013
    Publication date: November 14, 2013
    Inventors: Sang Hee PARK, Chi Sun HWANG, Byoung Gon YU
  • Patent number: 8570066
    Abstract: Disclosed are an inverter, a NAND gate, and a NOR gate. The inverter includes: a pull-up unit constituted by a second thin film transistor outputting a first power voltage to an output terminal according to a voltage applied to a gate; a pull-down unit constituted by a fifth thin film transistor outputting a ground voltage to the output terminal according to an input signal applied to a gate; and a pull-up driver applying a second power voltage or the ground voltage to the gate of the second thin film transistor according to the input signal.
    Type: Grant
    Filed: January 20, 2012
    Date of Patent: October 29, 2013
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Sang Hee Park, Chi Sun Hwang, Sung Min Yoon, Him Chan Oh, Kee Chan Park, Tao Ren, Hong Kyun Leem, Min Woo Oh, Ji Sun Kim, Jae Eun Pi, Byeong Hoon Kim, Byoung Gon Yu
  • Patent number: 8558295
    Abstract: Provided are a nonvolatile memory cell and a method of manufacturing the same. The nonvolatile memory cell includes a memory transistor and a driver transistor. The memory transistor includes a semiconductor layer, a buffer layer, an organic ferroelectric layer, and a gate electrode, which are disposed on a substrate. The driver transistor includes the semiconductor layer, the buffer layer, a gate insulating layer, and the gate electrode, which are disposed on the substrate. The memory transistor and the driver transistor are disposed on the same substrate. The nonvolatile memory cell is transparent in a visible light region.
    Type: Grant
    Filed: July 19, 2010
    Date of Patent: October 15, 2013
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Sung Min Yoon, Chun Won Byun, Shin Hyuk Yang, Sang Hee Park, Soon Won Jung, Seung Youl Kang, Chi Sun Hwang, Byoung Gon Yu
  • Publication number: 20130264546
    Abstract: Disclosed are an organic light emitting diode device and a method of fabricating the organic light emitting diode device capable of achieving high light extraction efficiency even without a high-cost and complicated process. The organic light emitting diode device according to an exemplary embodiment of the present disclosure includes a substrate; a phase change thin film layer formed on the substrate and formed of a phase change material changeable from an amorphous state to a crystalline state or from a crystalline state to an amorphous state; and an anode electrode layer, an organic light emitting layer and a cathode electrode layer which are sequentially formed on the phase change thin film layer.
    Type: Application
    Filed: November 30, 2012
    Publication date: October 10, 2013
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: Byoung Gon Yu, Jeong Ik Lee, Doo-Hee Cho
  • Patent number: 8476622
    Abstract: Disclosed are an active matrix organic light emitting diode and a method for manufacturing the same. The active matrix organic light emitting diode includes: a substrate; a black matrix formed above a part of the substrate; at least one thin film transistor formed above the black matrix; a passivation film formed to entirely cover the at least one thin film transistor; a planarizing layer formed above the passivation film; a color filter formed above an upper part of the planarizing layer opposite to the position where the at least one thin film transistor is formed; and an organic light emitting diode formed above the color filter.
    Type: Grant
    Filed: January 4, 2012
    Date of Patent: July 2, 2013
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Sang Hee Park, Chi Sun Hwang, Byoung Gon Yu
  • Patent number: 8476106
    Abstract: Provided are a transparent nonvolatile memory thin film transistor (TFT) and a method of manufacturing the same. The memory TFT includes source and drain electrodes disposed on a transparent substrate. A transparent semiconductor thin layer is disposed on the source and drain electrodes and the transparent substrate interposed between the source and drain electrodes. An organic ferroelectric thin layer is disposed on the transparent semiconductor thin layer. A gate electrode is disposed on the organic ferroelectric thin layer in alignment with the transparent semiconductor thin layer. Thus, the transparent nonvolatile memory TFT employs the organic ferroelectric thin layer, the oxide semiconductor thin layer, and auxiliary insulating layers disposed above and below the organic ferroelectric thin layer, thereby enabling low-cost manufacture of a transparent nonvolatile memory device capable of a low-temperature process.
    Type: Grant
    Filed: May 11, 2012
    Date of Patent: July 2, 2013
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Sung Min Yoon, Shin Hyuk Yang, Soon Won Jung, Seung Youl Kang, Doo Hee Cho, Chun Won Byun, Chi Sun Hwang, Byoung Gon Yu, Kyoung Ik Cho
  • Patent number: 8470719
    Abstract: Provided are a nonvolatile memory device and a method of fabricating the same, in which a phase-change layer is formed using a solid-state reaction to reduce a programmable volume, thereby lessening power consumption. The device includes a first reactant layer, a second reactant layer formed on the first reactant layer, and a phase-change layer formed between the first and second reactant layers due to a solid-state reaction between a material forming the first reactant layer and a material forming the second reactant layer. The phase-change memory device consumes low power and operates at high speed.
    Type: Grant
    Filed: May 18, 2011
    Date of Patent: June 25, 2013
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Seung Yun Lee, Young Sam Park, Sung Min Yoon, Soon Won Jung, Byoung Gon Yu
  • Publication number: 20130149803
    Abstract: Provided is a method of fabricating an organic light emitting diode. The method may include preparing a substrate, forming a textured portion on the substrate, the textured portion including protruding patterns randomly and irregularly arranged on the substrate, forming a planarization layer on the substrate to planarize the substrate formed with the textured portion, forming a first electrode on the planarization layer, forming an organic light emitting layer on the first electrode, and forming a second electrode on the organic light emitting layer.
    Type: Application
    Filed: September 7, 2012
    Publication date: June 13, 2013
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Jaehyun MOON, Jeong Ik Lee, Doo-Hee Cho, Seung Koo Park, Hye Yong Chu, Joo Hyun Hwang, Jin Wook Shin, Jun-Han Han, Chul Woong Joo, Jin Woo Huh, Byoung Gon Yu
  • Patent number: 8445887
    Abstract: A nonvolatile programmable switch device using a phase-change memory device and a method of manufacturing the same are provided. The switch device includes a substrate, a first metal electrode layer disposed on the substrate and including a plurality of terminals, a phase-change material layer disposed on the substrate and having a self-heating channel structure, the phase-change material layer having a plurality of introduction regions electrically contacting the terminals of the first metal electrode layer and a channel region interposed between the introduction regions, an insulating layer disposed on the first metal electrode layer and the phase-change material layer, a via hole disposed on the first metal electrode layer, and a second metal electrode layer disposed to fill the via hole.
    Type: Grant
    Filed: April 23, 2009
    Date of Patent: May 21, 2013
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Sung Min Yoon, Byoung Gon Yu, Soon Won Jung, Seung Yun Lee, Young Sam Park, Joon Suk Lee
  • Publication number: 20130056711
    Abstract: The inventive concept provides organic light emitting diodes and methods of manufacturing an organic light emitting diode. The organic light emitting diode includes a substrate, a first electrode layer and a second electrode layer formed on the substrate, an organic light emitting layer disposed between the first electrode layer and the second electrode layer and generating light, and a scattering layer between the first electrode layer and the substrate or between the first electrode layer and the organic light emitting layer. The scattering layer scatters the light.
    Type: Application
    Filed: June 12, 2012
    Publication date: March 7, 2013
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Jin Woo Huh, Jeong Ik Lee, Chul Woong Joo, Doo-Hee Cho, Jin Wook Shin, Jaehyun Moon, Jun-Han Han, Joo Hyun Hwang, Hye Yong Chu, Byoung Gon Yu
  • Publication number: 20130049046
    Abstract: The inventive concept provides an organic light emitting diode that can change its color. A color change is embodied by a micro cavity effect caused by a metal thin film partly formed on a positive pole. The organic light emitting diode includes a positive pole, an organic luminous layer and a negative pole that can be sequentially stacked on a substrate, and further include a metal thin film layer having first strip lines extending in a first direction and being arranged in a second direction crossing the first direction on the positive pole.
    Type: Application
    Filed: July 24, 2012
    Publication date: February 28, 2013
    Applicant: ELECTRONICS AND TELECOMUNICATIONS RESEARCH INSTITUTE
    Inventors: Jaehyun MOON, Hye Yong CHU, Jeong Ik LEE, Doo-Hee CHO, Jin Wook SHIN, Jun-Han HAN, Jin Woo HUH, Joo Hyun HWANG, Chul Woong JOO, Byoung Gon YU
  • Publication number: 20120242370
    Abstract: Disclosed are an inverter, a NAND gate, and a NOR gate. The inverter includes: a pull-up unit constituted by a second thin film transistor outputting a first power voltage to an output terminal according to a voltage applied to a gate; a pull-down unit constituted by a fifth thin film transistor outputting a ground voltage to the output terminal according to an input signal applied to a gate; and a pull-up driver applying a second power voltage or the ground voltage to the gate of the second thin film transistor according to the input signal.
    Type: Application
    Filed: January 20, 2012
    Publication date: September 27, 2012
    Applicants: Konkuk University Industrial Cooperation Corp, ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Sang Hee Park, Chi Sun Hwang, Sung Min Yoon, Him Chan Oh, Kee Chan Park, Tao Ren, Hong Kyun Leem, Min Woo Oh, Ji Sun Kim, Jae Eun Pi, Byeong Hoon Kim, Byoung Gon Yu
  • Patent number: 8263426
    Abstract: Provided is a high-sensitivity MEMS-type z-axis vibration sensor, which may sense z-axis vibration by differentially shifting an electric capacitance between a doped upper silicon layer and an upper electrode from positive to negative or vice versa when center mass of a doped polysilicon layer is moved due to z-axis vibration. Particularly, since a part of the doped upper silicon layer is additionally connected to the center mass of the doped polysilicon layer, and thus an error made by the center mass of the doped polysilicon layer is minimized, it may sensitively respond to weak vibration of low frequency such as seismic waves. Accordingly, since the high-sensitivity MEMS-type z-axis vibration sensor sensitively responds to a small amount of vibration in a low frequency band, it can be applied to a seismograph sensing seismic waves of low frequency which have a very small amount of vibration and a low vibration speed.
    Type: Grant
    Filed: July 24, 2009
    Date of Patent: September 11, 2012
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Sang Choon Ko, Chi Hoon Jun, Byoung Gon Yu, Chang Auck Choi
  • Publication number: 20120225500
    Abstract: Provided are a transparent nonvolatile memory thin film transistor (TFT) and a method of manufacturing the same. The memory TFT includes source and drain electrodes disposed on a transparent substrate. A transparent semiconductor thin layer is disposed on the source and drain electrodes and the transparent substrate interposed between the source and drain electrodes. An organic ferroelectric thin layer is disposed on the transparent semiconductor thin layer. A gate electrode is disposed on the organic ferroelectric thin layer in alignment with the transparent semiconductor thin layer. Thus, the transparent nonvolatile memory TFT employs the organic ferroelectric thin layer, the oxide semiconductor thin layer, and auxiliary insulating layers disposed above and below the organic ferroelectric thin layer, thereby enabling low-cost manufacture of a transparent nonvolatile memory device capable of a low-temperature process.
    Type: Application
    Filed: May 11, 2012
    Publication date: September 6, 2012
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: Sung Min YOON, Shin Hyuk Yang, Soon Won Jung, Seung Youl Kang, Doo Hee Cho, Chun Won Byun, Chi Sun Hwang, Byoung Gon Yu, Kyoung Ik Cho
  • Publication number: 20120217465
    Abstract: Provided is a non-volatile programmable device including a first terminal, a first threshold switching layer connected to part of the first terminal, a phase change layer connected to the first threshold switching layer, a second threshold switching layer connected to the phase change layer, a second terminal connected to the second threshold switching layer, and third and fourth terminals respectively connected to a side portion of the phase change layer and the other side portion opposite to the side portion of the phase change layer.
    Type: Application
    Filed: May 8, 2012
    Publication date: August 30, 2012
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: Seung Yun LEE, Young Sam Park, Sung Min Yoon, Soonwon Jung, Sang Hoon Cheon, Byoung Gon Yu
  • Publication number: 20120168761
    Abstract: Disclosed are an active matrix organic light emitting diode and a method for manufacturing the same. The active matrix organic light emitting diode includes: a substrate; a black matrix formed above a part of the substrate; at least one thin film transistor formed above the black matrix; a passivation film formed to entirely cover the at least one thin film transistor; a planarizing layer formed above the passivation film; a color filter formed above an upper part of the planarizing layer opposite to the position where the at least one thin film transistor is formed; and an organic light emitting diode formed above the color filter.
    Type: Application
    Filed: January 4, 2012
    Publication date: July 5, 2012
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Sang Hee PARK, Chi Sun HWANG, Byoung Gon YU
  • Patent number: 8198625
    Abstract: Provided are a transparent nonvolatile memory thin film transistor (TFT) and a method of manufacturing the same. The memory TFT includes source and drain electrodes disposed on a transparent substrate. A transparent semiconductor thin layer is disposed on the source and drain electrodes and the transparent substrate interposed between the source and drain electrodes. An organic ferroelectric thin layer is disposed on the transparent semiconductor thin layer. A gate electrode is disposed on the organic ferroelectric thin layer in alignment with the transparent semiconductor thin layer. Thus, the transparent nonvolatile memory TFT employs the organic ferroelectric thin layer, the oxide semiconductor thin layer, and auxiliary insulating layers disposed above and below the organic ferroelectric thin layer, thereby enabling low-cost manufacture of a transparent nonvolatile memory device capable of a low-temperature process.
    Type: Grant
    Filed: September 9, 2009
    Date of Patent: June 12, 2012
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Sung Min Yoon, Shin Hyuk Yang, Soon Won Jung, Seung Youl Kang, Doo Hee Cho, Chun Won Byun, Chi Sun Hwang, Byoung Gon Yu, Kyoung Ik Cho
  • Patent number: 8071396
    Abstract: An embedded memory required for a high performance, multifunction SOC, and a method of fabricating the same are provided. The memory includes a bipolar transistor, a phase-change memory device and a MOS transistor, adjacent and electrically connected, on a substrate. The bipolar transistor includes a base composed of SiGe disposed on a collector. The phase-change memory device has a phase-change material layer which is changed from an amorphous state to a crystalline state by a current, and a heating layer composed of SiGe that contacts the lower surface of the phase-change material layer.
    Type: Grant
    Filed: November 9, 2010
    Date of Patent: December 6, 2011
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Seung-Yun Lee, Sangouk Ryu, Sung Min Yoon, Young Sam Park, Kyu-Jeong Choi, Nam-Yeal Lee, Byoung-Gon Yu
  • Patent number: 8053730
    Abstract: An infrared sensor and a method of fabricating the same are provided. The sensor includes a substrate including a reflection layer and a plurality of pad electrodes, an interdigitated sensing electrode connected to the pad electrode and formed to be spaced apart from the reflection layer by a predetermined distance and a sensing layer formed on the sensing electrode and having an opening exposing a portion in which an interdigitated region of the sensing electrode connected to one pad region is separated from the sensing electrode connected to the other pad electrode. Therefore, the sensor has an electrode in a very simple constitution, and a sensing layer divided into rectangular blocks, so that current that non-uniformly flows into the electrode can be removed. Accordingly, the sensor in which current of the sensing layer can be uniformly flown, and noise is lowered can be implemented.
    Type: Grant
    Filed: July 29, 2009
    Date of Patent: November 8, 2011
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Seong Mok Cho, Ho Jun Ryu, Woo Seok Yang, Sang Hoon Cheon, Byoung Gon Yu, Chang Auk Choi
  • Patent number: 8047074
    Abstract: Provided are a humidity sensor and a method of manufacturing the same. The humidity sensor has high sensitivity, quick response time, improved temperature characteristics, low hysteresis and excellent durability. Moreover, for the humidity sensor, a humidity sensitive layer may be formed of various materials. The humidity sensor may be manufactured in a small size on a large scale.
    Type: Grant
    Filed: November 12, 2009
    Date of Patent: November 1, 2011
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Chi Hoon Jun, Sang Choon Ko, Chang Auck Choi, Byoung Gon Yu