Patents by Inventor Carmen Cánovas Vidal

Carmen Cánovas Vidal has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220047382
    Abstract: Lenses and methods are provided for improving peripheral and/or central vision for patients who suffer from certain retinal conditions that reduce central vision or patients who have undergone cataract surgery. The lens is configured to improve vision by having an optic configured to focus light incident along a direction parallel to an optical axis at the fovea in order to produce a functional foveal image. The optic is configured to focus light incident on the patient's eye at an oblique angle with respect to the optical axis at a peripheral retinal location disposed at a distance from the fovea, the peripheral retinal location having an eccentricity between ?30 degrees and 30 degrees. The image quality at the peripheral retinal location is improved by reducing at least one optical aberration at the peripheral retinal location. The method for improving vision utilizes ocular measurements to iteratively adjust the shape factor of the lens to reduce peripheral refractive errors.
    Type: Application
    Filed: October 29, 2021
    Publication date: February 17, 2022
    Inventors: Robert Rosén, Franck Emmanuel Gounou, Hendrik A. Weeber, Carmen Canovas Vidal, Marrie H. Van Der Mooren, Mihai State, Patricia Ann Piers, Aixa Alarcon Heredia, Dora Sellitri
  • Publication number: 20220047384
    Abstract: Apparatuses, systems and methods for providing improved intraocular lenses (IOLs), include features for reducing side effects, such as halos, glare and best focus shifts, in multifocal refractive lenses and extended depth of focus lenses. Exemplary ophthalmic lenses can include a continuous, power progressive aspheric surface based on two or more merged optical zones, the aspheric surface being defined by a single aspheric equation. Continuous power progressive intraocular lenses can mitigate optical side effects that typically result from abrupt optical steps. Aspheric power progressive and aspheric extended depth of focus lenses can be combined with diffractive lens profiles to further enhance visual performance while minimizing dysphotopsia effects.
    Type: Application
    Filed: August 31, 2021
    Publication date: February 17, 2022
    Inventors: Carmen Canovas Vidal, Aixa Alarcon Heredia, Patricia Ann Piers, Hendrik A. Weeber
  • Publication number: 20210386539
    Abstract: Intraocular lenses for reducing negative dysphotpsia (ND) are described herein. An example ophthalmic lens can include an optic (200) with a central optical zone (225) disposed about the optical axis (OA) and an attenuation optical zone (220) disposed about the central optical zone (225), wherein the attenuation optical zone (220) is contiguous with the central optical zone (225), and wherein optical power of the ophthalmic lens is gradually reduced within the attenuation optical zone (220).
    Type: Application
    Filed: October 21, 2019
    Publication date: December 16, 2021
    Inventors: Robert Rosen, Robin Zonneveld, Sieger Meijer, Aixa Alarcon Heredia, Mihai State, Carmen Canovas Vidal
  • Patent number: 11160651
    Abstract: Lenses and methods are provided for improving peripheral and/or central vision for patients who suffer from certain retinal conditions that reduce central vision or patients who have undergone cataract surgery. The lens is configured to improve vision by having an optic configured to focus light incident along a direction parallel to an optical axis at the fovea in order to produce a functional foveal image. The optic is configured to focus light incident on the patient's eye at an oblique angle with respect to the optical axis at a peripheral retinal location disposed at a distance from the fovea, the peripheral retinal location having an eccentricity between ?30 degrees and 30 degrees. The image quality at the peripheral retinal location is improved by reducing at least one optical aberration at the peripheral retinal location. The method for improving vision utilizes ocular measurements to iteratively adjust the shape factor of the lens to reduce peripheral refractive errors.
    Type: Grant
    Filed: March 13, 2020
    Date of Patent: November 2, 2021
    Assignee: AMO Groningen B.V.
    Inventors: Robert Rosén, Franck Emmanuel Gounou, Hendrik A. Weeber, Carmen Canovas Vidal, Marrie H. Van Der Mooren, Mihai State, Patricia Ann Piers, Aixa Alarcon Heredia, Dora Sellitri
  • Patent number: 11116624
    Abstract: Apparatuses, systems and methods for providing improved intraocular lenses (IOLs), include features for reducing side effects, such as halos, glare and best focus shifts, in multifocal refractive lenses and extended depth of focus lenses. Exemplary ophthalmic lenses can include a continuous, power progressive aspheric surface based on two or more merged optical zones, the aspheric surface being defined by a single aspheric equation. Continuous power progressive intraocular lenses can mitigate optical side effects that typically result from abrupt optical steps. Aspheric power progressive and aspheric extended depth of focus lenses can be combined with diffractive lens profiles to further enhance visual performance while minimizing dysphotopsia effects. The combination can provide an increased depth of focus that is greater than an individual depth of focus of either the refractive profile or the diffractive profile.
    Type: Grant
    Filed: April 17, 2020
    Date of Patent: September 14, 2021
    Assignee: AMO Groningen B.V.
    Inventors: Carmen Canovas Vidal, Aixa Alarcon Heredia, Patricia Ann Piers, Hendrik A. Weeber
  • Publication number: 20210275292
    Abstract: A system, method, and apparatus are provided for designing and evaluating intraocular lenses for a large field of view that generate a first eye model from data that includes constant and customized values, including customized values of a first intraocular lens. A simulated outcome is provided by the first intraocular lens in at least one modeled eye. A second eye model is generated wherein a second intraocular lens is substituted for the first intraocular lens. An outcome provided by the second intraocular lens is simulated in at least one modeled eye. Outcomes of the first and second intraocular lenses are compared.
    Type: Application
    Filed: May 21, 2021
    Publication date: September 9, 2021
    Inventors: Robert Rosen, Mihai State, Carmen Canovas Vidal, Aixa Alarcon Heredia, Marrie H. Van Der Mooren
  • Publication number: 20210279939
    Abstract: Systems and methods for evaluating ND are described herein. An example method can include constructing a non-sequential (NSC) ray-tracing model of an eye with an ophthalmic lens, and modelling a light source and a detector. The detector can be configured to mimic a retina of the eye. The method can also include computing irradiance data using the light source, the NSC ray-tracing model, and the detector. Irradiance data can be computed for each of a plurality of pupil sizes. The method can further include evaluating ND by analyzing the respective irradiance data for each of the pupil sizes. Also described herein are methods for designing an ophthalmic lens edge that reduces the incidence of ND for a given ophthalmic lens by adjusting the edge thickness and/or the scatter.
    Type: Application
    Filed: November 29, 2019
    Publication date: September 9, 2021
    Inventors: Mihai State, Robert Rosen, Sieger Meijer, Aixa Alarcon Heredia, Carmen Canovas Vidal
  • Publication number: 20210251743
    Abstract: Intraocular lenses with a base optical power and a customized add power. The add power is customized based on at least one of ocular biometry of an individual, position of the intraocular lens in the eye and a preferred reading distance.
    Type: Application
    Filed: April 30, 2021
    Publication date: August 19, 2021
    Inventors: Carmen Canovas Vidal, Robert Rosén, Marrie Van Der Mooren, Patricia A. Piers
  • Publication number: 20210236268
    Abstract: Intraocular lenses for reducing the risk of posterior capsule opacification (PCO) are described herein. PCO can be reduced with an IOL design that increases the pressure at the posterior capsular bend, for example, by including a sharper edge design, an enlarged optical zone, and/or an increased vault height. An example ophthalmic lens can include an optic (200) including an anterior surface (202) defining an anterior side of the optic, a posterior surface (204) defining a posterior side of the optic, and an edge (210) arranged between the anterior and posterior surfaces. The edge and the posterior surface can form an angle, where the angle is less than about 90 degrees. Additionally, the ophthalmic lens can have an increased vault height. At least one of the angle or the increased vault height be configured to increase pressure on a capsular bend in a subject's eye.
    Type: Application
    Filed: October 21, 2019
    Publication date: August 5, 2021
    Inventors: Robert Rosen, Hendrik A. Weeber, Carmen Canovas Vidal, Robin Zonneveld, Sieger Meijer, Bram Koopman, Bart Cannegieter, Theophilus Bogaert, Aixa Alarcon Heredia, Mihai State
  • Publication number: 20210196452
    Abstract: Apparatuses, systems and methods for providing improved ophthalmic lenses, particularly intraocular lenses (IOLs), include features for providing improved extended depth of focus lenses. Exemplary ophthalmic lenses can include an optic including a diffractive profile including at least one set of echelettes, each echelette of the set having a different width in r-squared space than any other echelette of the set and the at least one set of echelettes repeating at least once upon the optic.
    Type: Application
    Filed: December 18, 2020
    Publication date: July 1, 2021
    Inventors: Franck Gounou, Hendrik A. Weeber, Robert Rosen, Carmen Canovas Vidal, Patricia A. Piers
  • Patent number: 11013594
    Abstract: A system, method, and apparatus are provided for designing and evaluating intraocular lenses for a large field of view that generate a first eye model from data that includes constant and customized values, including customized values of a first intraocular lens. A simulated outcome is provided by the first intraocular lens in at least one modeled eye. A second eye model is generated wherein a second intraocular lens is substituted for the first intraocular lens. An outcome provided by the second intraocular lens is simulated in at least one modeled eye. Outcomes of the first and second intraocular lenses are compared.
    Type: Grant
    Filed: October 24, 2017
    Date of Patent: May 25, 2021
    Assignee: AMO Groningen B.V.
    Inventors: Robert Rosen, Mihai State, Carmen Canovas Vidal, Aixa Alarcon Heredia, Marrie H. Van Der Mooren
  • Patent number: 11000362
    Abstract: Intraocular lenses with a base optical power and a customized add power. The add power is customized based on at least one of ocular biometry of an individual, position of the intraocular lens in the eye and a preferred reading distance.
    Type: Grant
    Filed: September 11, 2018
    Date of Patent: May 11, 2021
    Assignee: AMO Groningen B.V.
    Inventors: Carmen Canovas Vidal, Robert Rosén, Marrie Van Der Mooren, Patricia A. Piers
  • Publication number: 20200330218
    Abstract: Apparatuses, systems and methods for providing improved intraocular lenses (IOLs), include features for reducing side effects, such as halos, glare and best focus shifts, in multifocal refractive lenses and extended depth of focus lenses. Exemplary ophthalmic lenses can include a continuous, power progressive aspheric surface based on two or more merged optical zones, the aspheric surface being defined by a single aspheric equation. Continuous power progressive intraocular lenses can mitigate optical side effects that typically result from abrupt optical steps. Aspheric power progressive and aspheric extended depth of focus lenses can be combined with diffractive lens profiles to further enhance visual performance while minimizing dysphotopsia effects. The combination can provide an increased depth of focus that is greater than an individual depth of focus of either the refractive profile or the diffractive profile.
    Type: Application
    Filed: July 7, 2020
    Publication date: October 22, 2020
    Inventors: Carmen Canovas Vidal, Aixa Alarcon Heredia, Patricia Ann Piers, Hendrik A. Weeber
  • Publication number: 20200315782
    Abstract: Systems and methods for improving vision of a subject implanted with an intraocular lens (IOL). In some embodiments, a method of treating an ocular disease of a subject having an implanted intraocular lens (IOL) includes determining visual needs of a subject that are associated with an ocular disease of the subject determining a pattern of a plurality of pulses of radiation to apply, by refractive index writing, and applying the plurality of pulses of radiation to the one or more selected areas of the IOL.
    Type: Application
    Filed: April 1, 2020
    Publication date: October 8, 2020
    Inventors: Robert Rosen, Franck Emmanuel Gounou, Carmen Canovas Vidal, Aixa Alarcon Heredia
  • Publication number: 20200315783
    Abstract: Systems and methods for improving vision of a subject implanted with an intraocular lens (IOL). In some embodiments, a method includes vergence matching for an intraocular lens (IOL) having an optical profile induced by refractive index writing.
    Type: Application
    Filed: April 1, 2020
    Publication date: October 8, 2020
    Inventors: Robert Rosen, Franck Emmanuel Gounou, Carmen Canovas Vidal, Aixa Alarcon Heredia
  • Publication number: 20200315781
    Abstract: Systems and methods for improving vision of a subject implanted with an intraocular lens (IOL). In some embodiments, a method includes determining at least one photic phenomenon experienced by the subject after implantation of the IOL; and applying a plurality of laser pulses to the IOL, the laser pulses being configured to produce, by refractive index writing on the IOL, a phase shift in the IOL to compensate for the photic phenomenon.
    Type: Application
    Filed: April 1, 2020
    Publication date: October 8, 2020
    Inventors: Robert Rosen, Franck Emmanuel Gounou, Carmen Canovas Vidal, Aixa Alarcon Heredia
  • Publication number: 20200315779
    Abstract: Systems and methods for improving vision of a subject implanted with an intraocular lens (IOL) that has a non-zero residual spherical error that requires an estimated diffractive power addition in the IOL. In some embodiments, a plurality of laser pulses are applied to the IOL, the laser pulses being configured to produce, by refractive index writing on the IOL, the estimated diffractive power addition to correct for the residual spherical error.
    Type: Application
    Filed: April 1, 2020
    Publication date: October 8, 2020
    Inventors: Robert Rosen, Franck Emmanuel Gounou, Carmen Canovas Vidal, Aixa Alarcon Heredia
  • Publication number: 20200315780
    Abstract: Systems and methods for improving vision of a subject implanted with an intraocular lens (IOL). In some embodiments, a method includes applying a plurality of laser pulses to the IOL. The laser pulses can be configured to produce, by refractive index writing on the IOL, a predetermined change in phase profile of the IOL to increase spectacle independence.
    Type: Application
    Filed: April 1, 2020
    Publication date: October 8, 2020
    Inventors: Robert Rosen, Franck Emmanuel Gounou, Carmen Canovas Vidal, Aixa Alarcon Heredia
  • Publication number: 20200315849
    Abstract: Systems and methods for improving vision of a subject implanted with an intraocular lens (IOL). In some embodiments, a method includes determining a deviation in position of at least one optical element from a reference line corresponding to alignment of the apex of the cornea, center of the pupil, center of the IOL, and fovea, and/or determining a tilt of at least one of the optical elements relative to the reference line. The method can further include applying a plurality of focused laser pulses to a selected area of the implanted IOL to produce, through refractive index writing, a phase change pattern on the IOL that is configured to compensate for the deviation(s) and/or tilt to improve the foveal vision of the subject.
    Type: Application
    Filed: April 1, 2020
    Publication date: October 8, 2020
    Inventors: Robert Rosen, Franck Emmanuel Gounou, Carmen Canovas Vidal, Aixa Alarcon Heredia
  • Publication number: 20200315850
    Abstract: Systems and methods for improving vision of a subject implanted with an intraocular lens (IOL). In some embodiments, a method for vergence matching includes calculating vergence of a wave after refraction on a surface of an IOL and, based on an estimated curvature, converting an initial phase map into a vergence-matched phase map, such that the initial phase map follows the curved vergence of the wavefront.
    Type: Application
    Filed: April 1, 2020
    Publication date: October 8, 2020
    Inventors: Robert Rosen, Franck Emmanuel Gounou, Carmen Canovas Vidal, Aixa Alarcon Heredia