Patents by Inventor Carmen Cánovas Vidal

Carmen Cánovas Vidal has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10456026
    Abstract: A system for predicting optical power for an intraocular lens based upon measured biometric parameters in a patient's eye includes: a biometric reader capable of measuring one or more biometric parameters of the patient's eye and obtaining at least one value for at least one of the one or more biometric parameters, and further measuring a representation of a corneal topography of the patient's eye; a processor; and a computer readable medium coupled to the processor and having stored thereon a program that upon execution causes the processor to: receive the at least one value; obtain a corneal spherical aberration (SA) based upon the representation of the corneal topography; and calculate an optimized optical power to obtain a desired postoperative condition by applying the received at least one value and the obtained corneal spherical aberration to a modified regression.
    Type: Grant
    Filed: April 13, 2016
    Date of Patent: October 29, 2019
    Assignee: AMO WaveFront Sciences, LLC
    Inventors: Daniel R. Neal, Thomas D. Raymond, Richard J. Copland, Wei Xiong, Stephen W. Farrer, Paul D. Pulaski, Daniel R. Hamrick, Carmen Canovas Vidal, Pablo Artal
  • Patent number: 10437078
    Abstract: An apparatus, system and method including an ophthalmic lens having an optic with an anterior surface, a posterior surface, and an optical axis. The ophthalmic lens further includes a first region having a first optical power and a second region having a second optical power. The ophthalmic lens further includes a third region having an optical power that progresses from the first optical power to the second optical power. The progression may be uniform or non-uniform. Each of the first, second and progression optical power may include a base power and an optical add power. Each of the first, second and progression regions may provide a first focus, a second focus and a plurality of third foci, respectively.
    Type: Grant
    Filed: November 13, 2017
    Date of Patent: October 8, 2019
    Assignee: AMO Groningen B.V.
    Inventors: Carmen Canovas Vidal, Marrie H. Van Der Mooren, Hendrik A. Weeber
  • Patent number: 10426601
    Abstract: Apparatuses, systems and methods for providing improved intraocular lenses (IOLs), include features for reducing side effects, such as halos, glare and best focus shifts, in multifocal refractive lenses and extended depth of focus lenses. Exemplary ophthalmic lenses can include a continuous, power progressive aspheric surface based on two or more merged optical zones, the aspheric surface being defined by a single aspheric equation. Continuous power progressive intraocular lenses can mitigate optical side effects that typically result from abrupt optical steps. Aspheric power progressive and aspheric extended depth of focus lenses can be combined with diffractive lens profiles to further enhance visual performance while minimizing dysphotopsia effects. The combination can provide an increased depth of focus that is greater than an individual depth of focus of either the refractive profile or the diffractive profile.
    Type: Grant
    Filed: February 9, 2017
    Date of Patent: October 1, 2019
    Assignee: AMO Groningen B.V.
    Inventors: Carmen Canovas Vidal, Aixa Alarcon Heredia, Patricia Ann Piers, Hendrik A. Weeber
  • Publication number: 20190239803
    Abstract: A psychophysical method, system, and apparatuses to characterize visual symptoms. A method may include presenting one or more stimuli to a patient indicating one or more visual symptoms. The patient may produce one or more responses to the stimuli. A determination of a measure of visual symptoms of the patient may be made utilizing a Bayesian method based on the responses.
    Type: Application
    Filed: February 8, 2019
    Publication date: August 8, 2019
    Inventors: Robert Rosen, Carmen Canovas Vidal
  • Patent number: 10327888
    Abstract: Systems and methods are provided for improving overall vision in patients suffering from a loss of vision in a portion of the retina (e.g., loss of central vision) by providing an enhanced toric lens which redirects and/or focuses light incident on the eye at oblique angles onto a peripheral retinal location. The intraocular lens can include a redirection element (e.g., a prism, a diffractive element, or an optical component with a decentered GRIN profile) configured to direct incident light along a deflected optical axis and to focus an image at a location on the peripheral retina. Optical properties of the intraocular lens can be configured to improve or reduce peripheral errors at the location on the peripheral retina. One or more surfaces of the intraocular lens can be a toric surface, a higher order aspheric surface, an aspheric Zernike surface or a Biconic Zernike.
    Type: Grant
    Filed: March 28, 2017
    Date of Patent: June 25, 2019
    Assignee: AMO GRONINGEN B.V.
    Inventors: Robert Rosen, Hendrik A. Weeber, Carmen Canovas Vidal, Marrie Van Der Mooren, Dora Sellitri
  • Publication number: 20190159891
    Abstract: Systems and methods are provided for improving overall vision in patients suffering from a loss of vision in a portion of the retina (e.g., loss of central vision) by providing a piggyback lens which in combination with the cornea and an existing lens in the patient's eye redirects and/or focuses light incident on the eye at oblique angles onto a peripheral retinal location. The piggyback lens can include a redirection element (e.g., a prism, a diffractive element, or an optical component with a decentered GRIN profile) configured to direct incident light along a deflected optical axis and to focus an image at a location on the peripheral retina. Optical properties of the piggyback lens can be configured to improve or reduce peripheral errors at the location on the peripheral retina.
    Type: Application
    Filed: November 26, 2018
    Publication date: May 30, 2019
    Inventors: Robert Rosen, Hendrik A. Weeber, Carmen Canovas Vidal, Marrie Van Der Mooren, Dora Sellitri, Patricia Ann Piers
  • Publication number: 20190117380
    Abstract: The present invention includes at least an intraocular lens, and a system and method of customizing at least one characteristic for an intraocular lens, in accordance with a regression that indicates the postoperative spherical aberration at the iris plane of a patient aphakic eye, in order to obtain a desired postoperative condition. The lens, system and method of customizing at least one characteristic of an intraocular lens may include measuring at least one biometric parameter of an eye at a desired light level, determining a desired postoperative condition of the eye, obtaining a corneal spherical aberration and an anterior chamber depth of the eye, and empirically calculating a spherical aberration at an iris or pupil plane of the eye, based on a regression formula comprising at least the corneal spherical aberration and the anterior chamber depth, and cross products thereof.
    Type: Application
    Filed: December 18, 2018
    Publication date: April 25, 2019
    Inventors: Marrie H. Van Der Mooren, Patricia Ann Piers, Theophilus Bogaert, Sverker Norrby, Carmen Canovas Vidal
  • Publication number: 20190110890
    Abstract: Systems and methods are provided for improving overall vision in patients suffering from a loss of vision in a portion of the retina (e.g., loss of central vision) by providing a piggyback lens which in combination with the cornea and an existing lens in the patient's eye redirects and/or focuses light incident on the eye at oblique angles onto a peripheral retinal location. The piggyback lens can include a redirection element (e.g., a prism, a diffractive element, or an optical component with a decentered GRIN profile) configured to direct incident light along a deflected optical axis and to focus an image at a location on the peripheral retina. Optical properties of the piggyback lens can be configured to improve or reduce optical errors at the location on the peripheral retina.
    Type: Application
    Filed: December 3, 2018
    Publication date: April 18, 2019
    Inventors: Robert Rosen, Hendrik A. Weeber, Carmen Canovas Vidal, Marrie Van Der Mooren, Dora Sellitri, Patricia Ann Piers
  • Publication number: 20190076240
    Abstract: Intraocular lenses with a base optical power and a customized add power. The add power is customized based on at least one of ocular biometry of an individual, position of the intraocular lens in the eye and a preferred reading distance.
    Type: Application
    Filed: September 11, 2018
    Publication date: March 14, 2019
    Inventors: Carmen Canovas Vidal, Robert Rosén, Marrie Van Der Mooren, Patricia A. Piers
  • Patent number: 10159565
    Abstract: An intraocular lens, and a system and method of customizing at least one characteristic for an intraocular lens, in accordance with a regression that indicates the postoperative spherical aberration at the iris plane of a patient aphakic eye, in order to obtain a desired postoperative condition. The lens, system and method of customizing at least one characteristic of an intraocular lens may include measuring at least one biometric parameter of an eye at a desired light level, determining a desired postoperative condition of the eye, obtaining a corneal spherical aberration and an anterior chamber depth of the eye, and empirically calculating a spherical aberration at an iris or pupil plane of the eye, based on a regression formula comprising at least the corneal spherical aberration and the anterior chamber depth, and cross products thereof.
    Type: Grant
    Filed: October 15, 2012
    Date of Patent: December 25, 2018
    Assignee: AMO Groningen B.V.
    Inventors: Marrie H Van Der Mooren, Patricia Ann Piers, Theophilus Bogaert, Sverker Norrby, Carmen Canovas-Vidal
  • Patent number: 10143548
    Abstract: Systems and methods are provided for improving overall vision in patients suffering from a loss of vision in a portion of the retina (e.g., loss of central vision) by providing a piggyback lens which in combination with the cornea and an existing lens in the patient's eye redirects and/or focuses light incident on the eye at oblique angles onto a peripheral retinal location. The piggyback lens can include a redirection element (e.g., a prism, a diffractive element, or an optical component with a decentered GRIN profile) configured to direct incident light along a deflected optical axis and to focus an image at a location on the peripheral retina. Optical properties of the piggyback lens can be configured to improve or reduce optical errors at the location on the peripheral retina.
    Type: Grant
    Filed: September 9, 2015
    Date of Patent: December 4, 2018
    Assignee: AMO Groningen B.V.
    Inventors: Robert Rosen, Hendrik A. Weeber, Carmen Canovas Vidal, Marrie Van Der Mooren, Dora Sellitri, Patricia Ann Piers
  • Patent number: 10136805
    Abstract: An intraocular lens, and a system and method of providing an intraocular lens, having at least one characteristic of the intraocular lens customized in accordance with a modified regression that includes a modification for corneal spherical aberration. The lens, system and method may indicate measuring at least one biometric parameter of an eye at a desired light level, determining a desired postoperative condition of the eye, obtaining a corneal spherical aberration of the eye, applying at least one empirically derived regression calculation, and predictively estimating, in accordance with an output of the at least one empirically derived regression calculation, the at least one characteristic of the intraocular lens to obtain the desired postoperative condition.
    Type: Grant
    Filed: July 18, 2016
    Date of Patent: November 27, 2018
    Assignee: AMO Groningen B.V.
    Inventors: Carmen Canovas Vidal, Pablo Artal
  • Patent number: 10136990
    Abstract: Systems and methods are provided for improving overall vision in patients suffering from a loss of vision in a portion of the retina (e.g., loss of central vision) by providing a piggyback lens which in combination with the cornea and an existing lens in the patient's eye redirects and/or focuses light incident on the eye at oblique angles onto a peripheral retinal location. The piggyback lens can include a redirection element (e.g., a prism, a diffractive element, or an optical component with a decentered GRIN profile) configured to direct incident light along a deflected optical axis and to focus an image at a location on the peripheral retina. Optical properties of the piggyback lens can be configured to improve or reduce peripheral errors at the location on the peripheral retina.
    Type: Grant
    Filed: March 10, 2015
    Date of Patent: November 27, 2018
    Assignee: AMO Groningen B.V.
    Inventors: Robert Rosen, Hendrik A. Weeber, Carmen Canovas Vidal, Marrie Van Der Mooren, Dora Sellitri, Patricia Ann Piers
  • Publication number: 20180325658
    Abstract: Apparatuses, systems and methods for providing improved intraocular lenses (IOLs), include features for reducing side effects, such as halos, glare and best focus shifts, in multifocal refractive lenses and extended depth of focus lenses. Exemplary ophthalmic lenses can include a continuous, power progressive aspheric surface based on two or more merged optical zones, the aspheric surface being defined by a single aspheric equation. Continuous power progressive intraocular lenses can mitigate optical side effects that typically result from abrupt optical steps. Aspheric power progressive and aspheric extended depth of focus lenses can be combined with diffractive lens profiles to further enhance visual performance while minimizing dysphotopsia effects. The combination can provide an increased depth of focus that is greater than an individual depth of focus of either the refractive profile or the diffractive profile.
    Type: Application
    Filed: July 23, 2018
    Publication date: November 15, 2018
    Inventors: Carmen Canovas Vidal, Aixa Alarcon Heredia, Patricia Ann Piers, Hendrik A. Weeber
  • Publication number: 20180318065
    Abstract: The present disclosure relates to devices, systems, and methods for improving or optimizing peripheral vision. In particular, methods are disclosed which include utilizing particular characteristics of the retina in improving or optimizing peripheral vision. Additionally, various IOL designs, as well as IOL implantation locations, are disclosed which improve or optimize peripheral vision.
    Type: Application
    Filed: July 2, 2018
    Publication date: November 8, 2018
    Inventors: Robert Rosen, Hendrik A. Weeber, Carmen Canovas Vidal, Marrie H. Van Der Mooren, Mihai State, Patricia Ann Piers, Aixa Alarcon Heredia
  • Publication number: 20180318069
    Abstract: Systems and methods are provided for improving overall vision in patients suffering from a loss of vision in a portion of the retina (e.g., loss of central vision) by providing a dual optic intraocular lens which redirects and/or focuses light incident on the eye at oblique angles onto a peripheral retinal location. The intraocular lens can include a redirection element (e.g., a prism, a diffractive element, or an optical component with a decentered GRIN profile) configured to direct incident light along a deflected optical axis and to focus an image at a location on the peripheral retina. Optical properties of the intraocular lens can be configured to improve or reduce peripheral errors at the location on the peripheral retina. One or more surfaces of the intraocular lens can be a toric surface, a higher order aspheric surface, an aspheric Zernike surface or a Biconic Zernike surface to reduce optical errors in an image produced at a peripheral retinal location by light incident at oblique angles.
    Type: Application
    Filed: July 9, 2018
    Publication date: November 8, 2018
    Inventors: Robert Rosen, Hendrik A. Weeber, Carmen Canovas Vidal, Marrie Van Der Mooren, Dora Sellitri, Patricia Ann Piers
  • Patent number: 10088384
    Abstract: A system and method of characterizing through-focus visual performance of an IOL using metrics based on an area under the modulation transfer function for different spatial frequencies at different defocus positions of the IOL. Also disclosed is a system and method of characterizing through-focus visual performance of an IOL using a metric based on an area under a cross-correlation coefficient for an image of a target acquired by the IOL at different defocus positions of the IOL.
    Type: Grant
    Filed: November 17, 2017
    Date of Patent: October 2, 2018
    Assignee: AMO Groningen B.V.
    Inventors: Aixa Alarcon Heredia, Carmen Canovas Vidal, Robert Rosén, Hendrik A. Weeber, Patricia Ann Piers
  • Publication number: 20180263760
    Abstract: Apparatuses, systems and methods for providing improved ophthalmic lenses, particularly intraocular lenses (IOLs). Exemplary diffractive intraocular implants (IOLs) can include a diffractive profile having multiple diffractive zones. The diffractive zones can include a central zone that includes one or more echelettes and a peripheral zone beyond the central zone having one or more peripheral echelettes. The central diffractive zone can work in a higher diffractive order than a remainder of the diffractive profile. The combination of the central and peripheral zones and an optional intermediate zone provides a longer depth of focus than a diffractive profile defined just by a peripheral and/or optional intermediate zone.
    Type: Application
    Filed: March 16, 2018
    Publication date: September 20, 2018
    Inventors: Carmen Cánovas Vidal, Hendrik A. Weeber, Patricia Ann Piers
  • Patent number: 10070952
    Abstract: An apparatus, system and method for constricting a cornea of a human eye are disclosed. A control device external to the subject eye, such as an induction generator, may be configured to create a stimulus, such as a magnetic field, for an implanted ring that, when stimulated, may change the curvature, and thus the dioptric power, of the eye, thereby approximating natural accommodation.
    Type: Grant
    Filed: January 30, 2017
    Date of Patent: September 11, 2018
    Assignee: AMO Groningen B.V.
    Inventors: Luuk Franssen, Hendrik A. Weeber, Marrie H. Van Der Mooren, Carmen Canovas Vidal, Kaccie Y. Li, Sieger Meijer, Richard Hartman
  • Publication number: 20180221140
    Abstract: Systems and methods are provided for improving overall vision in patients suffering from a loss of vision in a portion of the retina (e.g., loss of central vision) by providing symmetric or asymmetric optic with aspheric surface which redirects and/or focuses light incident on the eye at oblique angles onto a peripheral retinal location. The intraocular lens can include a redirection element (e.g., a prism, a diffractive element, or an optical component with a decentered GRIN profile) configured to direct incident light along a deflected optical axis and to focus an image at a location on the peripheral retina. Optical properties of the intraocular lens can be configured to improve or reduce peripheral errors at the location on the peripheral retina.
    Type: Application
    Filed: January 15, 2018
    Publication date: August 9, 2018
    Inventors: Robert Rosen, Hendrik A. Weeber, Carmen Canovas Vidal, Marrie Van Der Mooren, Dora Sellitri