Patents by Inventor Carmen Cánovas Vidal

Carmen Cánovas Vidal has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200315848
    Abstract: Systems and methods for improving vision of a subject implanted with an intraocular lens (IOL). In some embodiments, a method includes determining at least one modification to be made to an IOL implanted in a subject to improve the vision of the subject, wherein the IOL has a first index of refraction; and based on the determination, applying laser radiation to at least one selected area of the IOL to form, within the IOL, at least one additional layer having a different index of refraction than the first index of refraction and a particular shape within the IOL configured to improve the vision of the subject.
    Type: Application
    Filed: April 1, 2020
    Publication date: October 8, 2020
    Inventors: Robert Rosen, Franck Emmanuel Gounou, Carmen Canovas Vidal, Aixa Alarcon Heredia
  • Publication number: 20200306032
    Abstract: Apparatuses, systems and methods for providing improved intraocular lenses (IOLs), include features for reducing side effects, such as halos, glare and best focus shifts, in multifocal refractive lenses and extended depth of focus lenses. Exemplary ophthalmic lenses can include a continuous, power progressive aspheric surface based on two or more merged optical zones, the aspheric surface being defined by a single aspheric equation. Continuous power progressive intraocular lenses can mitigate optical side effects that typically result from abrupt optical steps. Aspheric power progressive and aspheric extended depth of focus lenses can be combined with diffractive lens profiles to further enhance visual performance while minimizing dysphotopsia effects.
    Type: Application
    Filed: April 17, 2020
    Publication date: October 1, 2020
    Inventors: Carmen Canovas Vidal, Aixa Alarcon Heredia, Patricia Ann Piers, Hendrik A. Weeber
  • Publication number: 20200276051
    Abstract: An apparatus, such as lenses, a system and a method for providing custom ocular aberrations that provide higher visual acuity. The apparatus, system and method include inducing rotationally symmetric aberrations along with an add power in one eye and inducing non-rotationally symmetric aberrations along with an add power in the other eye to provide improved visual acuity at an intermediate distance.
    Type: Application
    Filed: May 15, 2020
    Publication date: September 3, 2020
    Inventors: Carmen Canovas Vidal, Marrie H. Van Der Mooren, Luuk Franssen, Hendrik A. Weeber
  • Patent number: 10758340
    Abstract: An intraocular lens (IOL), system, and method having a base lens and a complementary lens selected to form a curved image surface matching a retina surface when placed in an eye's line of sight.
    Type: Grant
    Filed: February 3, 2017
    Date of Patent: September 1, 2020
    Assignee: Johnson & Johnson Surgical Vision, Inc.
    Inventors: Kaccie Y. Li, Hendrik A. Weeber, Carmen Canovas Vidal, Patricia Ann Piers, Huawei Zhao, Robert Rosen
  • Patent number: 10709550
    Abstract: Apparatuses, systems and methods for providing improved intraocular lenses (IOLs), include features for reducing side effects, such as halos, glare and best focus shifts, in multifocal refractive lenses and extended depth of focus lenses. Exemplary ophthalmic lenses can include a continuous, power progressive aspheric surface based on two or more merged optical zones, the aspheric surface being defined by a single aspheric equation. Continuous power progressive intraocular lenses can mitigate optical side effects that typically result from abrupt optical steps. Aspheric power progressive and aspheric extended depth of focus lenses can be combined with diffractive lens profiles to further enhance visual performance while minimizing dysphotopsia effects. The combination can provide an increased depth of focus that is greater than an individual depth of focus of either the refractive profile or the diffractive profile.
    Type: Grant
    Filed: July 23, 2018
    Date of Patent: July 14, 2020
    Assignee: AMO Groningen B.V.
    Inventors: Carmen Canovas Vidal, Aixa Alarcon Heredia, Patricia Ann Piers, Hendrik A. Weeber
  • Publication number: 20200214829
    Abstract: Lenses and methods are provided for improving peripheral and/or central vision for patients who suffer from certain retinal conditions that reduce central vision or patients who have undergone cataract surgery. The lens is configured to improve vision by having an optic configured to focus light incident along a direction parallel to an optical axis at the fovea in order to produce a functional foveal image. The optic is configured to focus light incident on the patient's eye at an oblique angle with respect to the optical axis at a peripheral retinal location disposed at a distance from the fovea, the peripheral retinal location having an eccentricity between ?30 degrees and 30 degrees. The image quality at the peripheral retinal location is improved by reducing at least one optical aberration at the peripheral retinal location. The method for improving vision utilizes ocular measurements to iteratively adjust the shape factor of the lens to reduce peripheral refractive errors.
    Type: Application
    Filed: March 13, 2020
    Publication date: July 9, 2020
    Inventors: Robert Rosén, Franck Emmanuel Gounou, Hendrik A. Weeber, Carmen Canovas Vidal, Marrie H. Van Der Mooren, Mihai State, Patricia Ann Piers, Aixa Alarcon Heredia, Dora Sellitri
  • Publication number: 20200214831
    Abstract: The present disclosure relates to devices, systems, and methods for improving or optimizing peripheral vision. In particular, methods are disclosed which include utilizing particular characteristics of the retina in improving or optimizing peripheral vision. Additionally, various IOL designs, as well as IOL implantation locations, are disclosed which improve or optimize peripheral vision.
    Type: Application
    Filed: March 13, 2020
    Publication date: July 9, 2020
    Inventors: Robert Rosen, Hendrik A. Weeber, Carmen Canovas Vidal, Marrie H. Van Der Mooren, Mihai State, Patricia Ann Piers, Aixa Alarcon Heredia
  • Patent number: 10653556
    Abstract: An apparatus, such as lenses, a system and a method for providing custom ocular aberrations that provide higher visual acuity. The apparatus, system and method include inducing rotationally symmetric aberrations along with an add power in one eye and inducing non-rotationally symmetric aberrations along with an add power in the other eye to provide improved visual acuity at an intermediate distance.
    Type: Grant
    Filed: July 31, 2017
    Date of Patent: May 19, 2020
    Assignee: AMO Groningen B.V.
    Inventors: Carmen Canovas Vidal, Marrie H. Van Der Mooren, Luuk Franssen, Hendrik A. Weeber
  • Patent number: 10624735
    Abstract: Apparatuses, systems and methods for providing improved intraocular lenses (IOLs), include features for reducing side effects, such as halos, glare and best focus shifts, in multifocal refractive lenses and extended depth of focus lenses. Exemplary ophthalmic lenses can include a continuous, power progressive aspheric surface based on two or more merged optical zones, the aspheric surface being defined by a single aspheric equation. Continuous power progressive intraocular lenses can mitigate optical side effects that typically result from abrupt optical steps. Aspheric power progressive and aspheric extended depth of focus lenses can be combined with diffractive lens profiles to further enhance visual performance while minimizing dysphotopsia effects. The combination can provide an increased depth of focus that is greater than an individual depth of focus of either the refractive profile or the diffractive profile.
    Type: Grant
    Filed: February 9, 2017
    Date of Patent: April 21, 2020
    Assignee: AMO GRONINGEN B.V.
    Inventors: Carmen Canovas Vidal, Aixa Alarcon Heredia, Patricia Ann Piers, Hendrik A. Weeber
  • Publication number: 20200113433
    Abstract: An optical measurement system and apparatus for carrying out cataract diagnostics in an eye of a patient includes a Corneal Topography Subsystem, a wavefront aberrometer subsystem, and an eye structure imaging subsystem, wherein the subsystems have a shared optical axis, and each subsystem is operatively coupled to the others via a controller. The eye structure imaging subsystem is preferably a fourierdomain optical coherence tomographer, and more preferably, a swept source OCT.
    Type: Application
    Filed: December 13, 2019
    Publication date: April 16, 2020
    Inventors: Daniel Neal, Thomas D. Raymond, Richard J. Copland, Wei Xiong, Paul D. Pulaski, Stephen Farrer, Carmen Canovas Vidal, Daniel Hamrick
  • Patent number: 10588738
    Abstract: Lenses and methods are provided for improving peripheral and/or central vision for patients who suffer from certain retinal conditions that reduce central vision or patients who have undergone cataract surgery. The lens is configured to improve vision by having an optic configured to focus light incident along a direction parallel to an optical axis at the fovea in order to produce a functional foveal image. The optic is configured to focus light incident on the patient's eye at an oblique angle with respect to the optical axis at a peripheral retinal location disposed at a distance from the fovea, the peripheral retinal location having an eccentricity between ?30 degrees and 30 degrees. The image quality at the peripheral retinal location is improved by reducing at least one optical aberration at the peripheral retinal location. The method for improving vision utilizes ocular measurements to iteratively adjust the shape factor of the lens to reduce peripheral refractive errors.
    Type: Grant
    Filed: March 10, 2017
    Date of Patent: March 17, 2020
    Assignee: AMO GRONINGEN B.V.
    Inventors: Robert Rosén, Franck Emmanuel Gounou, Hendrik A. Weeber, Carmen Canovas Vidal, Marrie H. Van Der Mooren, Mihai State, Patricia Ann Piers, Aixa Alarcon Heredia, Dora Sellitri
  • Patent number: 10588739
    Abstract: The present disclosure relates to devices, systems, and methods for improving or optimizing peripheral vision. In particular, methods are disclosed which include utilizing particular characteristics of the retina in improving or optimizing peripheral vision. Additionally, various IOL designs, as well as IOL implantation locations, are disclosed which improve or optimize peripheral vision.
    Type: Grant
    Filed: July 2, 2018
    Date of Patent: March 17, 2020
    Assignee: AMO GRONINGEN B.V.
    Inventors: Robert Rosen, Hendrik A. Weeber, Carmen Canovas Vidal, Marrie H. Van Der Mooren, Mihai State, Patricia Ann Piers, Aixa Alarcon Heredia
  • Patent number: 10583039
    Abstract: Improved devices, systems, and methods for planning cataract surgery on an eye of a patient incorporate results of prior corrective surgeries into a planned cataract surgery of a particular patient by driving an effective surgery vector function based on data from the prior corrective surgeries. The exemplary effective surgery vector employs an influence matrix which may allow improved refractive corrections to be generated so as to increase the overall efficacy of a cataract surgery by specifying one or more parameters of an intraocular lens (IOL) to be implanted during the cataract surgery.
    Type: Grant
    Filed: November 23, 2015
    Date of Patent: March 10, 2020
    Assignee: AMO WaveFront Sciences, LLC
    Inventors: Thomas D. Raymond, Daniel R. Neal, Richard J. Copland, Wei Xiong, Paul Pulaski, Stephen W. Farrer, Carmen Canovas Vidal, Daniel R. Hamrick
  • Patent number: 10582846
    Abstract: Improved devices, systems, and methods for planning cataract surgery on an eye of a patient incorporate results of prior corrective surgeries into a planned cataract surgery of a particular patient by driving an effective surgery vector function based on data from the prior corrective surgeries. The exemplary effective surgery vector employs an influence matrix which may allow improved refractive corrections to be generated so as to increase the overall efficacy of a cataract surgery by specifying one or more parameters of an intraocular lens (IOL) to be implanted during the cataract surgery.
    Type: Grant
    Filed: November 23, 2015
    Date of Patent: March 10, 2020
    Assignee: AMO WaveFront Sciences, LLC
    Inventors: Thomas D. Raymond, Daniel R. Neal, Richard J. Copland, Wei Xiong, Paul Pulaski, Stephen W. Farrer, Carmen Canovas Vidal, Daniel R. Hamrick
  • Patent number: 10582847
    Abstract: Improved devices, systems, and methods for planning cataract surgery on an eye of a patient incorporate results of prior corrective surgeries into a planned cataract surgery of a particular patient by driving an effective surgery vector function based on data from the prior corrective surgeries. The exemplary effective surgery vector employs an influence matrix which may allow improved refractive corrections to be generated so as to increase the overall efficacy of a cataract surgery by specifying one or more parameters of an intraocular lens (IOL) to be implanted during the cataract surgery.
    Type: Grant
    Filed: November 23, 2015
    Date of Patent: March 10, 2020
    Assignee: AMO WaveFront Sciences, LLC
    Inventors: Thomas D. Raymond, Daniel R. Neal, Richard J. Copland, Wei Xiong, Paul Pulaski, Stephen W. Farrer, Carmen Canovas Vidal, Daniel R. Hamrick
  • Publication number: 20200054445
    Abstract: Systems and methods are provided for improving overall vision in patients suffering from a loss of vision in a portion of the retina (e.g., loss of central vision) by providing symmetric or asymmetric optic with aspheric surface which redirects and/or focuses light incident on the eye at oblique angles onto a peripheral retinal location. The intraocular lens can include a redirection element (e.g., a prism, a diffractive element, or an optical component with a decentered GRIN profile) configured to direct incident light along a deflected optical axis and to focus an image at a location on the peripheral retina. Optical properties of the intraocular lens can be configured to improve or reduce peripheral errors at the location on the peripheral retina.
    Type: Application
    Filed: October 25, 2019
    Publication date: February 20, 2020
    Inventors: Robert Rosen, Hendrik A. Weeber, Carmen Canovas Vidal, Marrie Van Der Mooren, Dora Sellitri
  • Publication number: 20200033635
    Abstract: An apparatus, system and method including an ophthalmic lens having an optic with an anterior surface, a posterior surface, and an optical axis. The ophthalmic lens further includes a first region having a first optical power and a second region having a second optical power. The ophthalmic lens further includes a third region having an optical power that progresses from the first optical power to the second optical power. The progression may be uniform or non-uniform. Each of the first, second and progression optical power may include a base power and an optical add power. Each of the first, second and progression regions may provide a first focus, a second focus and a plurality of third foci, respectively.
    Type: Application
    Filed: October 7, 2019
    Publication date: January 30, 2020
    Inventors: Carmen Canovas Vidal, Marrie H. Van Der Mooren, Hendrik A. Weeber
  • Publication number: 20200022806
    Abstract: Apparatuses, systems and methods for providing improved intraocular lenses (IOLs), include features for reducing side effects, such as halos, glare and best focus shifts, in multifocal refractive lenses and extended depth of focus lenses. Exemplary ophthalmic lenses can include a continuous, power progressive aspheric surface based on two or more merged optical zones, the aspheric surface being defined by a single aspheric equation. Continuous power progressive intraocular lenses can mitigate optical side effects that typically result from abrupt optical steps. Aspheric power progressive and aspheric extended depth of focus lenses can be combined with diffractive lens profiles to further enhance visual performance while minimizing dysphotopsia effects. The combination can provide an increased depth of focus that is greater than an individual depth of focus of either the refractive profile or the diffractive profile.
    Type: Application
    Filed: September 27, 2019
    Publication date: January 23, 2020
    Inventors: Carmen Canovas Vidal, Aixa Alarcon Heredia, Patricia Ann Piers, Hendrik A. Weeber
  • Patent number: 10506923
    Abstract: An optical measurement system and apparatus for carrying out cataract diagnostics in an eye of a patient includes a Corneal Topography Subsystem, a wavefront aberrometer subsystem, and an eye structure imaging subsystem, wherein the subsystems have a shared optical axis, and each subsystem is operatively coupled to the others via a controller. The eye structure imaging subsystem is preferably a fourierdomain optical coherence tomographer, and more preferably, a swept source OCT.
    Type: Grant
    Filed: December 15, 2015
    Date of Patent: December 17, 2019
    Assignee: AMO WaveFront Sciences, LLC
    Inventors: Daniel Neal, Thomas D. Raymond, Richard J. Copland, Wei Xiong, Paul D. Pulaski, Stephen Farrer, Carmen Canovas Vidal, Daniel Hamrick
  • Patent number: 10456242
    Abstract: Systems and methods are provided for improving overall vision in patients suffering from a loss of vision in a portion of the retina (e.g., loss of central vision) by providing symmetric or asymmetric optic with aspheric surface which redirects and/or focuses light incident on the eye at oblique angles onto a peripheral retinal location. The intraocular lens can include a redirection element (e.g., a prism, a diffractive element, or an optical component with a decentered GRIN profile) configured to direct incident light along a deflected optical axis and to focus an image at a location on the peripheral retina. Optical properties of the intraocular lens can be configured to improve or reduce peripheral errors at the location on the peripheral retina.
    Type: Grant
    Filed: January 15, 2018
    Date of Patent: October 29, 2019
    Assignee: AMO Groningen B.V.
    Inventors: Robert Rosen, Hendrik A. Weeber, Carmen Canovas Vidal, Marrie Van Der Mooren, Dora Sellitri