Patents by Inventor Cha Won Koh

Cha Won Koh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7687369
    Abstract: A method of forming fine metal interconnect patterns includes forming an insulating film on a substrate, forming a plurality of mold patterns with first spaces therebetween on the insulating film, such that the mold patterns have a first layout, forming metal hardmask patterns in the first spaces by a damascene process, removing the mold patterns, etching the insulating film through the metal hardmask patterns to form insulating film patterns with second spaces therebetween, the second spaces having the first layout, and forming metal interconnect patterns having the first layout in the second spaces by the damascene process.
    Type: Grant
    Filed: September 4, 2007
    Date of Patent: March 30, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Cha-won Koh, Jeong-lim Nam, Gi-sung Yeo, Sang-jin Kim, Sung-gon Jung
  • Patent number: 7678650
    Abstract: Example embodiments provide a nonvolatile memory device and a method of manufacturing the same. A floating gate electrode of the nonvolatile memory device may have a cross-shaped section as taken along a direction extending along a control gate electrode. The floating gate electrode may have an inverse T-shaped section as taken along a direction extending along an active region perpendicular to the control gate electrode. The floating gate electrode may include a lower gate pattern, a middle gate pattern and an upper gate pattern sequentially disposed on a gate insulation layer, in which the middle gate pattern is larger in width than the lower gate pattern and the upper gate pattern. A boundary between the middle gate pattern and the upper gate pattern may have a rounded corner.
    Type: Grant
    Filed: May 20, 2009
    Date of Patent: March 16, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Cha-Won Koh, Byung-Hong Chung, Sang-Gyun Woo, Jeong-Lim Nam, Seok-Hwan Oh, Jai-Hyuk Song, Hyun Park, Yool Kang
  • Publication number: 20090291561
    Abstract: Disclosed is a method of forming a pattern. A first organic polymer layer is formed on a substrate on which an underlying layer, and then a second organic polymer layer, which has an opening partially exposing the first organic polymer layer, is formed on the first organic polymer layer. Next, a silicon-containing polymer layer is formed on the second organic polymer layer to cover the opening. The silicon-containing polymer layer is oxidized and simultaneously the second organic polymer layer and the first organic polymer layer are ashed by oxygen plasma to form a pattern having an anisotropy-shape. The underlying layer is etched using the silicon-containing polymer layer and the first organic polymer layer as an etching mask to form a pattern.
    Type: Application
    Filed: July 29, 2009
    Publication date: November 26, 2009
    Inventors: Cha-Won Koh, Sang-Gyun Woo, Gi-Sung Yeo, Myoung-Ho Jung
  • Publication number: 20090258473
    Abstract: Example embodiments provide a nonvolatile memory device and a method of manufacturing the same. A floating gate electrode of the nonvolatile memory device may have a cross-shaped section as taken along a direction extending along a control gate electrode. The floating gate electrode may have an inverse T-shaped section as taken along a direction extending along an active region perpendicular to the control gate electrode. The floating gate electrode may include a lower gate pattern, a middle gate pattern and an upper gate pattern sequentially disposed on a gate insulation layer, in which the middle gate pattern is larger in width than the lower gate pattern and the upper gate pattern. A boundary between the middle gate pattern and the upper gate pattern may have a rounded corner.
    Type: Application
    Filed: May 20, 2009
    Publication date: October 15, 2009
    Inventors: Cha-Won Koh, Byung-Hong Chung, Sang-Gyun Woo, Jeong-Lim Nam, Seok-Hwan Oh, Jai-Hyuk Song, Hyun Park, Yool Kang
  • Patent number: 7582899
    Abstract: There are provided a semiconductor device having an overlay measurement mark, and a method of fabricating the same. The semiconductor device includes a scribe line region disposed on a semiconductor substrate. A first main scale layer having a first group of line and space patterns and a second group of line and space patterns is disposed on the scribe line region. Line-shaped second main scale patterns are disposed on space regions of the first group of the line and space patterns. Line-shaped vernier scale patterns are disposed on space regions of the second group of the line and space patterns. In the method, a first main scale layer having a first group of line and space patterns and a second group of line and space patterns is formed on a semiconductor substrate. Line-shaped second main scale patterns are formed on space regions of the first group of the line and space patterns. Line-shaped vernier scale patterns are formed on space regions of the second group of the line and space patterns.
    Type: Grant
    Filed: December 8, 2005
    Date of Patent: September 1, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Cha-Won Koh, Sang-Gyun Woo, Seok-Hwan Oh, Gi-Sung Yeo, Hyun-Jae Kang, Jang-Ho Shin
  • Patent number: 7575855
    Abstract: Disclosed is a method of forming a pattern. A first organic polymer layer is formed on a substrate on which an underlying layer, and then a second organic polymer layer, which has an opening partially exposing the first organic polymer layer, is formed on the first organic polymer layer. Next, a silicon-containing polymer layer is formed on the second organic polymer layer to cover the opening. The silicon-containing polymer layer is oxidized and simultaneously the second organic polymer layer and the first organic polymer layer are ashed by oxygen plasma to form a pattern having an anisotropy-shape. The underlying layer is etched using the silicon-containing polymer layer and the first organic polymer layer as an etching mask to form a pattern.
    Type: Grant
    Filed: June 3, 2005
    Date of Patent: August 18, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Cha-Won Koh, Sang-Gyun Woo, Gi-Sung Yeo, Myoung-Ho Jung
  • Patent number: 7560768
    Abstract: Provided are a nonvolatile memory device and a method of manufacturing the same. A floating gate electrode of the nonvolatile memory device may have a cross-shaped section as taken along a direction extending along a control gate electrode. The floating gate electrode may have an inverse T-shaped section as taken along a direction extending along an active region perpendicular to the control gate electrode. The floating gate electrode may include a lower gate pattern, a middle gate pattern and an upper gate pattern sequentially disposed on a gate insulation layer, in which the middle gate pattern is larger in width than the lower gate pattern and the upper gate pattern. A boundary between the middle gate pattern and the upper gate pattern may have a rounded corner.
    Type: Grant
    Filed: November 9, 2006
    Date of Patent: July 14, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Cha-Won Koh, Byung-Hong Chung, Sang-Gyun Woo, Jeong-Lim Nam, Seok-Hwan Oh, Jai-Hyuk Song, Hyun Park, Yool Kang
  • Patent number: 7540970
    Abstract: Methods of fabricating a semiconductor device are provided. Methods of forming a finer pattern of a semiconductor device using a buffer layer for retarding, or preventing, bridge formation between patterns in the formation of a finer pattern below resolution limits of a photolithography process by double patterning are also provided. A first hard mask layer and/or a second hard mask layer may be formed on a layer of a substrate to be etched. A first etch mask pattern of a first pitch may be formed on the second hard mask layer. After a buffer layer is formed on the overall surface of the substrate, a second etch mask pattern of a second pitch may be formed thereon in a region between the first etch mask pattern. The buffer layer may be anisotropically etched using the second etch mask pattern as an etch mask, forming a buffer layer pattern.
    Type: Grant
    Filed: May 8, 2006
    Date of Patent: June 2, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Cha-Won Koh, Sang-Gyun Woo, Jeong-Lim Nam, Kyeong-Koo Chi, Seok-Hwan Oh, Gi-Sung Yeo, Seung-Pil Chung, Heung-Sik Park
  • Patent number: 7452825
    Abstract: In the method of forming a mask structure, a first mask is formed on a substrate where the first mask includes a first mask pattern having a plurality of mask pattern portions having openings therebetween and a second mask pattern having a corner portion of which an inner side wall that is curved. A sacrificial layer is formed on the first mask. A hard mask layer is formed on the sacrificial layer. After the hard mask layer is partially removed until the sacrificial layer adjacent to the corner portion is exposed, a second mask is formed from the hard mask layer remaining in the space after removing the sacrificial layer. A minute pattern having a fine structure may be easily formed on the substrate.
    Type: Grant
    Filed: October 30, 2006
    Date of Patent: November 18, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Doo-Youl Lee, Han-Ku Cho, Suk-Joo Lee, Gi-Sung Yeo, Cha-Won Koh, Sung-Gon Jung
  • Publication number: 20080200026
    Abstract: A method of forming fine metal interconnect patterns includes forming an insulating film on a substrate, forming a plurality of mold patterns with first spaces therebetween on the insulating film, such that the mold patterns have a first layout, forming metal hardmask patterns in the first spaces by a damascene process, removing the mold patterns, etching the insulating film through the metal hardmask patterns to form insulating film patterns with second spaces therebetween, the second spaces having the first layout, and forming metal interconnect patterns having the first layout in the second spaces by the damascene process.
    Type: Application
    Filed: September 4, 2007
    Publication date: August 21, 2008
    Inventors: Cha-won Koh, Jeong-lim Nam, Gi-sung Yeo, Sang-jin Kim, Sung-gon Jung
  • Patent number: 7387869
    Abstract: A method of forming a pattern for a semiconductor device is disclosed. According to the method, a lower photoresist layer is formed on a lower layer and an upper photoresist pattern including a silylated layer is formed on the lower photoresist layer. The upper photoresist pattern is used as a mask for etching the lower photoresist layer to thereby form a lower photoresist pattern. The upper and lower photoresist patterns are used as a mask for etching the lower layer beneath the lower photoresist pattern.
    Type: Grant
    Filed: May 26, 2005
    Date of Patent: June 17, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Cha-Won Koh, Sang-Gyun Woo, Byeong-Soo Kim
  • Publication number: 20080131793
    Abstract: A method for forming hard mask patterns includes, sequentially forming first, second, and third hard mask layers formed of materials having different etching selectivities on a substrate, forming first sacrificial patterns having a first pitch therebetween on the third hard mask layer, forming fourth hard mask patterns with a second pitch between the first sacrificial patterns, the second pitch being substantially equal to about ½ of the first pitch, patterning the third hard mask layer to form third hard mask patterns using the fourth hard mask patterns as an etch mask, patterning the second hard mask layer to form second hard mask patterns using the third and fourth hard mask patterns as an etch mask, and patterning the first hard mask layer to form first hard mask patterns with the second pitch therebetween using the second and third hard mask patterns as an etch mask.
    Type: Application
    Filed: October 30, 2007
    Publication date: June 5, 2008
    Inventors: Hak-sun Lee, Myeong-cheol Kim, Kyung-yub Jeon, Cha-won Koh, Ji-young Lee
  • Publication number: 20080124931
    Abstract: A method for forming fine patterns of a semiconductor device includes forming an etching film on a substrate having first and second areas, forming first mask patterns on the substrate to have a first pattern density in the first area and a second pattern density in the second area, forming first capping patterns between the first mask patterns, forming second capping patterns between the first mask patterns, such that recess areas are formed between second capping patterns, and such that a first etching pattern is defined to include the first and second capping patterns, forming second mask patterns in the recess areas to include the first and second mask patterns, removing one of the first and second etching patterns, such that a single etching pattern is remaining on the substrate, and etching the etching film using the remaining etching pattern as an etch mask to form etching film patterns.
    Type: Application
    Filed: October 30, 2007
    Publication date: May 29, 2008
    Inventors: Doo-youl Lee, Pan-suk Kwak, Sung-gon Jung, Jung-hyeon Lee, Suk-joo Lee, Cha-won Koh, Ji-young Lee
  • Publication number: 20080090419
    Abstract: A method of forming hard mask employs a double patterning technique. A first hard mask layer is formed on a substrate, and a first sacrificial pattern is formed on the first hard mask layer by photolithography. Features of the first sacrificial pattern are spaced from one another by a first pitch. A second hard mask layer is then formed conformally on the first sacrificial pattern and the first hard mask layer so as to delimit recesses between adjacent features of the first sacrificial pattern. Upper portions of the second hard mask layer are removed to expose the first sacrificial pattern, and the exposed first sacrificial pattern and the second sacrificial pattern are removed. The second hard mask layer and the first hard mask layer are then etched to form a hard mask composed of residual portions of the first hard mask layer and the second hard mask layer.
    Type: Application
    Filed: March 23, 2007
    Publication date: April 17, 2008
    Inventors: Cha-won Koh, Han-ku Cho, Jeong-lim Nam, Gi-sung Yeo, Joon-soo Park, Ji-young Lee
  • Publication number: 20080076070
    Abstract: A fine pattern is formed in an integrated circuit substrate, by forming a sacrificial pattern on the integrated circuit substrate. The sacrificial pattern includes tops and side walls. Atomic layer deposition is then performed to atomic layer deposit a mask material layer on the sacrificial pattern, including on the tops and the side walls thereof, and on the integrated circuit substrate therebetween. The mask material layer that was atomic layer deposited is then etched, to expose the top and the integrated circuit therebetween, such that a mask material pattern remains on the side walls. The sacrificial pattern is then removed, and the integrated circuit substrate is then etched through the mask material pattern that remains.
    Type: Application
    Filed: October 30, 2006
    Publication date: March 27, 2008
    Inventors: Cha-won Koh, Han-ku Cho, Gi-sung Yeo, Yool Kang, Ji-young Lee, Doo-youl Lee
  • Publication number: 20080067550
    Abstract: Provided are a flash memory device and a method of manufacturing the same. The flash memory device includes strings. Each of the strings has a string selection line, a ground selection line, and an odd number of word lines formed between the string selection line and the ground selection line.
    Type: Application
    Filed: October 31, 2006
    Publication date: March 20, 2008
    Inventors: Doo-youl Lee, Han-ku Cho, Suk-joo Lee, Gi-sung Yeo, Cha-won Koh, Pan-suk Kwak
  • Publication number: 20080057610
    Abstract: In the method of forming a mask structure, a first mask is formed on a substrate where the first mask includes a first mask pattern having a plurality of mask pattern portions having openings therebetween and a second mask pattern having a corner portion of which an inner side wall that is curved. A sacrificial layer is formed on the first mask. A hard mask layer is formed on the sacrificial layer. After the hard mask layer is partially removed until the sacrificial layer adjacent to the corner portion is exposed, a second mask is formed from the hard mask layer remaining in the space after removing the sacrificial layer. A minute pattern having a fine structure may be easily formed on the substrate.
    Type: Application
    Filed: October 30, 2006
    Publication date: March 6, 2008
    Inventors: Doo-Youl Lee, Han-Ku Cho, Suk-Joo Lee, Gi-Sung Yeo, Cha-Won Koh, Sung-Gon Jung
  • Patent number: 7329477
    Abstract: The present invention provides a process for using an amine contamination-protecting top-coating composition. Preferably, the amine contamination-protecting top-coating composition of the present invention comprises an amine contamination-protecting compound. Useful amine contamination-protecting compounds include amine derivatives; amino acid derivatives; amide derivatives; urethane derivatives; urea derivatives; salts thereof; and mixtures thereof. The amine contamination-protecting top-coating composition of the present invention reduces or eliminates problems such as T-topping due to a post exposure delay effect and/or difficulties in forming a fine pattern below 100 nm due to acid diffusion associated with conventional lithography processes involving a photoresist polymer containing an alicyclic main chain using a light source, such as KrF (248 nm), ArF (193 nm), F2 (157 nm), E-beam, ion beam and extremely ultraviolet (EUV).
    Type: Grant
    Filed: November 19, 2004
    Date of Patent: February 12, 2008
    Assignee: Hynix Semiconductor Inc.
    Inventors: Jae Chang Jung, Keun Kyu Kong, Hyeong Soo Kim, Jin Soo Kim, Cha Won Koh, Sung Eun Hong, Geun Su Lee, Min Ho Jung, Ki Ho Baik
  • Publication number: 20070197014
    Abstract: A method of fabricating a semiconductor device includes forming an interlayer insulating layer on a semiconductor substrate, forming a hard mask layer on the interlayer insulating layer, forming a hard mask pattern in which a plurality of contact hole patterns are formed by patterning the hard mask layer at least two times, conformally forming a supporting liner layer on the hard mask pattern, which supports the hard mask pattern during etching by reinforcing the thickness of the hard mask pattern, forming a plurality of contact hole patterns in the interlayer insulating layer using the hard mask pattern on which the supporting liner layer is formed as an etching mask, and forming contact plugs filling the plurality of contact hole patterns.
    Type: Application
    Filed: February 6, 2007
    Publication date: August 23, 2007
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Jin-ho Jeon, Cha-won Koh, Yun-sook Chae, Gi-sung Yeo, Tae-young Kim
  • Publication number: 20070181828
    Abstract: Disclosed is an E-beam lithography system for synchronously irradiating surfaces of a plurality of substrates. The E-beam lithography system may include a loading unit loading and unloading substrates, an alignment chamber aligning the substrates, a transfer chamber transferring the substrates from the loading unit or chambers, a lithography chamber radiating one or more electron beams onto the substrates, and a vacuum chamber creating a vacuum in the chambers. A stage may be installed in the lithography chamber such that the substrates may be mounted on the stage and radiated with one or more electron beams.
    Type: Application
    Filed: January 23, 2007
    Publication date: August 9, 2007
    Inventors: Je-bum Yoon, Cha-won Koh, Myoung-ho Jung, Gi-sung Yeo, Sang-jin Kim