Patents by Inventor Chad A. Cobbley

Chad A. Cobbley has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20040032013
    Abstract: A method and apparatus for assembling and packaging semiconductor dice. The semiconductor dice or assemblies of stacked and electrically interconnected semiconductor dice are placed at mutually spaced locations with respect to a common plane and encapsulated in a dielectric material so that end portions of discrete conductive elements extending outward from each semiconductor die adjacent the common plane are exposed through an outer surface of the dielectric material. Redistribution lines are formed to extend from the exposed end portions of the discrete conductive elements to predetermined locations over the outer surface of the encapsulant which correspond with another interconnect outline, such as terminal pads of a printed circuit board, and conductive bumps formed at the predetermined locations.
    Type: Application
    Filed: August 15, 2002
    Publication date: February 19, 2004
    Inventors: Chad A. Cobbley, Jerry M. Brooks
  • Publication number: 20040033673
    Abstract: A method and apparatus for assembling and packaging semiconductor dice. The semiconductor dice or assemblies of stacked and electrically interconnected semiconductor dice are placed at mutually spaced locations with respect to a common plane and encapsulated in a dielectric material so that end portions of discrete conductive elements extending outward from each semiconductor die adjacent the common plane are exposed through an outer surface of the dielectric material. Redistribution lines are formed to extend from the exposed end portions of the discrete conductive elements to predetermined locations over the outer surface of the encapsulant which correspond with another interconnect outline and conductive bumps formed at the predetermined locations.
    Type: Application
    Filed: April 16, 2003
    Publication date: February 19, 2004
    Inventors: Chad A. Cobbley, Jerry M. Brooks
  • Patent number: 6689635
    Abstract: An apparatus and method for face-down connection of a die to a substrate with polymer electrodes, the method comprising forming a plurality of conductive polymer electrodes on a substrate assembly: and elevating the temperature of the die sufficiently to cause electrical and fixed connection of the die to the electrodes upon appropriate contact; and then bringing the die face and electrodes into appropriate contact thereby forming the fixed and electrical connection.
    Type: Grant
    Filed: March 3, 2000
    Date of Patent: February 10, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Chad Cobbley, Tongbi Jiang
  • Patent number: 6682955
    Abstract: A technique for forming die stacks. Specifically, a stacking tip is provided to facilitate the stacking of die in a desired configuration. A first die is picked up by the stacking tip. The first die is coated with an adhesive on the underside of the die. The first die is brought in contact with a second die via the stacking tip. The second die is coupled to the first die via the adhesive on the underside of the first die. The second die is coated with an adhesive coating on the underside of the die. The second die is then brought in contact with a third die via the stacking tip. The third die is coupled to the second die via the adhesive on the underside of the second die, and so forth. Die stacks are formed without being coupled to a substrate. The die stacks may be functionally and/or environmentally tested before attaching the die stack to a substrate.
    Type: Grant
    Filed: May 8, 2002
    Date of Patent: January 27, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Chad A. Cobbley, Timothy L. Jackson
  • Publication number: 20040011228
    Abstract: A stencil for use in fabricating semiconductor devices is disclosed that has an aperture having a first portion extending from a first side thereof and a second portion extending from a second side thereof to minimize the shear stress between the material extruded therethrough and the stencil. The stencil allows for material to be extruded through the top of the stencil to the surface of the substrate and not contact the wall of the second portion of the aperture of the stencil. Since the material only contacts a small area of the first portion of the aperture near the top of the stencil, the material remains on the substrate and not in the aperture of the stencil.
    Type: Application
    Filed: June 26, 2003
    Publication date: January 22, 2004
    Inventors: Chad Cobbley, Ford B. Grigg
  • Patent number: 6669781
    Abstract: A method and apparatus for improved stencil/screen print quality is disclosed. The stencil or screen assists in application of a printable material onto a substrate, such as an adhesive to a semiconductor die of a semiconductor wafer during a lead-on-chip (LOC) packaging process. In one embodiment, the stencil includes a coating applied to at least one surface of a pattern of the stencil or screen to retard running of the printable material onto the surface. In another embodiment, the stencil or screen includes a second coating applied to at least one other surface of the pattern to promote spreading of the printable material onto the substrate.
    Type: Grant
    Filed: September 23, 1997
    Date of Patent: December 30, 2003
    Assignee: Micron Technology, Inc.
    Inventors: Tongbi Jiang, Chad A. Cobbley, John VanNortwick
  • Publication number: 20030235663
    Abstract: A method and apparatus for encapsulating a microelectronic substrate. In one embodiment, the apparatus can include a mold having an internal volume with a first portion configured to receive the microelectronic substrate coupled to a second portion configured to receive a pellet for encapsulating the microelectronic substrate. A plunger moves axially in the second portion to force the pellet into the first portion and around the microelectronic substrate. The pellet has overall external dimensions approximately the same as a conventional pellet, but has cavities or other features that reduce the volume of the pellet and the amount of pellet waste material left after the pellet encapsulates the microelectronic substrate. Accordingly, the pellet can be used with existing pellet handling machines. The mold and/or the plunger can have protrusions and/or other shape features that reduce the size of the first portion of the internal volume.
    Type: Application
    Filed: March 17, 2003
    Publication date: December 25, 2003
    Inventors: Vernon M. Williams, Chad A. Cobbley
  • Publication number: 20030232461
    Abstract: The invention provides methods for packaging for electronic devices that are light or other radiation-sensitive, such as image sensors including CCD or CMOS chips. In one embodiment of the invention, an image sensor package is assembled by surrounding a chip with a barrier of transfer mold compound and covering the chip with a transparent lid. In another embodiment of the invention, the perimeter area of a chip, including interconnections such as wire bonds and bond pads, is encapsulated with a liquid dispensed epoxy, and a transparent lid is attached. In yet another embodiment of the invention, chip encapsulation is accomplished with a unitary shell of entirely transparent material. In yet another embodiment of the invention, a substrate-mounted chip and a transparent lid are loaded into a transfer mold that holds them in optimal alignment. The transfer mold is then filled with molding compound to encapsulate the chip and interconnections, and to retain the transparent lid.
    Type: Application
    Filed: February 21, 2003
    Publication date: December 18, 2003
    Inventors: Todd O. Bolken, Chad A. Cobbley
  • Patent number: 6660558
    Abstract: A method for fabricating a semiconductor package is performed using a mold tooling fixture having a mold cavity and a pair of flash control cavities on either side of the mold cavity. The semiconductor package includes a substrate and a semiconductor die attached to the substrate. The substrate includes a pattern of conductors wire bonded to the die, and an array of solder balls bonded to ball bonding pads on the conductors. In addition, the substrate includes a die encapsulant encapsulating the die, and a wire bond encapsulant encapsulating the wire bonds. During molding of the wire bond encapsulant, the flash control cavities collect flash, and provide pressure relief for venting the mold cavity. In addition, the flash control cavities restrict the flash to a selected area of the package substrate, such that the ball bonding pads and solder balls are not contaminated.
    Type: Grant
    Filed: May 2, 2001
    Date of Patent: December 9, 2003
    Assignee: Micron Technology, Inc.
    Inventors: Todd O. Bolken, David L. Peters, Patrick W. Tandy, Chad A. Cobbley
  • Publication number: 20030222333
    Abstract: The invention provides improved packaging for electronic devices that are light or other radiation-sensitive, such as image sensors including CCD or CMOS chips. Methods of assembly are also provided. In one embodiment of the invention, an image sensor package is assembled by surrounding a chip with a barrier of transfer mold compound and covering the chip with a transparent lid. In another embodiment of the invention, the perimeter area of a chip, including interconnections such as wire bonds and bond pads, is encapsulated with a liquid dispensed epoxy, and a transparent lid is attached. In yet another embodiment of the invention, chip encapsulation is accomplished with a unitary shell of entirely transparent material. In yet another embodiment of the invention, a substrate-mounted chip and a transparent lid are loaded into a transfer mold that holds them in optimal alignment.
    Type: Application
    Filed: June 4, 2002
    Publication date: December 4, 2003
    Inventors: Todd O. Bolken, Chad A. Cobbley
  • Publication number: 20030209831
    Abstract: A method and apparatus for encapsulating a microelectronic substrate. In one embodiment, the apparatus can include a mold having an internal volume with a first portion configured to receive the microelectronic substrate coupled to a second portion configured to receive a pellet for encapsulating the microelectronic substrate. A plunger moves axially in the second portion to force the pellet into the first portion and around the microelectronic substrate. The pellet has overall external dimensions approximately the same as a conventional pellet, but has cavities or other features that reduce the volume of the pellet and the amount of pellet waste material left after the pellet encapsulates the microelectronic substrate. Accordingly, the pellet can be used with existing pellet handling machines. The mold and/or the plunger can have protrusions and/or other shape features that reduce the size of the first portion of the internal volume.
    Type: Application
    Filed: March 17, 2003
    Publication date: November 13, 2003
    Inventors: Vernon M. Williams, Chad A. Cobbley
  • Publication number: 20030211655
    Abstract: A technique for forming die stacks. Specifically, a stacking tip is provided to facilitate the stacking of die in a desired configuration. A first die is picked up by the stacking tip. The first die is coated with an adhesive on the underside of the die. The first die is brought in contact with a second die via the stacking tip. The second die is coupled to the first die via the adhesive on the underside of the first die. The second die is coated with an adhesive coating on the underside of the die. The second die is then brought in contact with a third die via the stacking tip. The third die is coupled to the second die via the adhesive on the underside of the second die, and so forth. Die stacks are formed without being coupled to a substrate. The die stacks may be functionally and/or environmentally tested before attaching the die stack to a substrate.
    Type: Application
    Filed: May 8, 2002
    Publication date: November 13, 2003
    Inventors: Chad A. Cobbley, Timothy L. Jackson
  • Patent number: 6646354
    Abstract: An adhesive composition and methods incorporating the adhesive composition in semiconductor applications are provided. The adhesive composition is an instant setting adhesive composition that does not require external energy input such as heat or radiation such for application of the adhesive composition on a surface. The instant setting composition possesses sufficient thixotropic characteristics such that applying the instant setting adhesive composition to a surface can be accomplished by a variety of application techniques and in a variety of patterns. Once applied to the surface, the instant setting adhesive composition sets to retain the discrete pattern as applied, in a relatively short period of time, typically from about 0.10 to about 120 seconds at an ambient temperature, typically from 20° C. to 30° C.
    Type: Grant
    Filed: April 24, 1998
    Date of Patent: November 11, 2003
    Assignee: Micron Technology, Inc.
    Inventors: Chad A. Cobbley, Tongbi Jiang, Edward A. Schrock
  • Patent number: 6641669
    Abstract: A method and apparatus for improved stencil/screen print quality is disclosed. The stencil or screen assists in application of a printable material onto a substrate, such as an adhesive to a semiconductor die of a semiconductor wafer during a lead-on-chip (LOC) packaging process. In one embodiment, the stencil includes a coating applied to at least one surface of a pattern of the stencil or screen to retard running of the printable material onto the surface. In another embodiment, the stencil or screen includes a second coating applied to at least one other surface of the pattern to promote spreading of the printable material onto the substrate.
    Type: Grant
    Filed: February 28, 2000
    Date of Patent: November 4, 2003
    Assignee: Micron Technology, Inc.
    Inventors: Tongbi Jiang, Chad A. Cobbley, John VanNortwick
  • Publication number: 20030201526
    Abstract: A ball grid array assembly includes a package cover that encapsulates a die and a portion of a substrate to which the die is attached, including an edge of the substrate. Encapsulation of the substrate edge by the cover reduces penetration of moisture or other contaminants into the substrate. The cover includes a rib that extends to contact a circuit board to which the ball grid array assembly is connected. With such a rib, planarity between the circuit board and the substrate is maintained during soldering.
    Type: Application
    Filed: May 5, 2003
    Publication date: October 30, 2003
    Inventors: Todd O. Bolken, Cary J. Baerlocher, David J. Corisis, Chad A. Cobbley
  • Publication number: 20030203668
    Abstract: An anisotropic electrically conducting interconnect is disclosed in which an adhesive comprising particles having a breakable coating of at least one electrically nonconductive material is compressed between a first contact and a second contact. Compression to two contacts breaks the breakable coating exposing an electrically conducting material which makes contact with the first and second contacts. The electrically conducting material may be a metal conductor or a two-part reactive conductive resin/catalyst system. Also disclosed are processes for making such electrical interconnects and adhesives for use in making electrical interconnect.
    Type: Application
    Filed: April 25, 2002
    Publication date: October 30, 2003
    Applicant: Micron Technology, Inc.
    Inventors: Chad A. Cobbley, Steve W. Heppler
  • Publication number: 20030155636
    Abstract: A stiffener molded to a semiconductor substrate, such as a lead frame, and methods of molding the stiffener to the substrate are provided. The stiffener is molded to the substrate to provide rigidity and support to the substrate. The stiffener material can comprise a polymeric material molded to the substrate by a molding technique such as transfer molding, injection molding, and spray molding, or using an encapsulating material. One or more dies, chips, or other semiconductor or microelectronic devices can be disposed on the substrate to form a die assembly. The stiffener can be molded to a substrate comprising one or more dies, over which an encapsulating material can be applied to produce a semiconductor die package.
    Type: Application
    Filed: February 15, 2002
    Publication date: August 21, 2003
    Inventors: Chad A. Cobbley, Cary J. Baerlocher
  • Patent number: 6607599
    Abstract: A method and apparatus for improved stencil/screen print quality is disclosed. The stencil or screen assists in application of a printable material onto a substrate, such as an adhesive to a semiconductor die of a semiconductor wafer during a lead-on-chip (LOC) packaging process. In one embodiment, the stencil includes a coating applied to at least one surface of a pattern of the stencil or screen to retard running of the printable material onto the surface. In another embodiment, the stencil or screen includes a second coating applied to at least one other surface of the pattern to promote spreading of the printable material onto the substrate.
    Type: Grant
    Filed: February 28, 2000
    Date of Patent: August 19, 2003
    Assignee: Micron Technology, Inc.
    Inventors: Tongbi Jiang, Chad A. Cobbley, John VanNortwick
  • Publication number: 20030141888
    Abstract: Flip-chip semiconductor assemblies, each including integrated circuit (IC) dice and an associated substrate, are electrically tested before encapsulation using an in-line or in-situ test socket or probes at a die-attach station. Those assemblies using “wet” quick-cure epoxies for die-attachment may be tested prior to the epoxy being cured by pressing the integrated circuit (IC) dice against interconnection points on the substrate for electrical connection, while those assemblies using “dry” epoxies may be cured prior to testing. In either case, any failures in the dice or in the interconnections between the dice and the substrates can be easily fixed, and the need for the use of known-good-die (KGD) rework procedures during repair is eliminated.
    Type: Application
    Filed: January 8, 2003
    Publication date: July 31, 2003
    Inventors: Chad A. Cobbley, John VanNortwick, Bret K. Street, Tongbi Jiang
  • Patent number: 6599365
    Abstract: A method and apparatus for improved stencil/screen print quality is disclosed. The stencil or screen assists in application of a printable material onto a substrate, such as an adhesive to a semiconductor die of a semiconductor wafer during a lead-on-chip (LOC) packaging process. In one embodiment, the stencil includes a coating applied to at least one surface of a pattern of the stencil or screen to retard running of the printable material onto the surface. In another embodiment, the stencil or screen includes a second coating applied to at least one other surface of the pattern to promote spreading of the printable material onto the substrate.
    Type: Grant
    Filed: February 28, 2000
    Date of Patent: July 29, 2003
    Assignee: Micron Technology, Inc.
    Inventors: Tongbi Jiang, Chad A. Cobbley, John VanNortwick