Patents by Inventor Chang Soo Suh

Chang Soo Suh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240274705
    Abstract: A semiconductor device includes a gallium nitride based low threshold depletion mode transistor (GaN FET) with a threshold potential between ?10 volts and ?0.5 volts. The GaN FET has a channel layer of III-N semiconductor material including gallium and nitrogen that supports a two-dimensional electron gas (2DEG). The GaN FET has a barrier layer of III-N semiconductor material including aluminum and nitrogen over the channel layer. The GaN FET further has a p-type gate of III-N semiconductor material including gallium and nitrogen. A bottom surface of the gate, adjacent to the barrier layer, does not extend past a top surface of the barrier layer, located opposite from the channel layer. The GaN FET is free of a dielectric layer between the gate and the barrier layer.
    Type: Application
    Filed: April 3, 2024
    Publication date: August 15, 2024
    Applicant: Texas Instruments Incorporated
    Inventors: Chang Soo Suh, Jungwoo Joh, Dong Seup Lee, Shoji Wada, Karen Hildegard Ralston Kirmse
  • Patent number: 12046666
    Abstract: In some examples, a gallium nitride (GaN)-based transistor, comprises a substrate; a GaN layer supported by the substrate; an aluminum nitride gallium (AlGaN) layer supported by the GaN layer; a p-doped GaN structure supported by the AlGaN layer; and multiple p-doped GaN blocks supported by the AlGaN layer, each of the multiple p-doped GaN blocks physically separated from the remaining multiple p-doped GaN blocks, wherein first and second contours of a two-dimensional electron gas (2DEG) of the GaN-based transistor are at an interface of the AlGaN and GaN layers.
    Type: Grant
    Filed: May 25, 2021
    Date of Patent: July 23, 2024
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Chang Soo Suh, Sameer Prakash Pendharkar, Naveen Tipirneni, Jungwoo Joh
  • Patent number: 11978790
    Abstract: A semiconductor device includes a gallium nitride based low threshold depletion mode transistor (GaN FET) with a threshold potential between ?10 volts and ?0.5 volts. The GaN FET has a channel layer of III-N semiconductor material including gallium and nitrogen that supports a two-dimensional electron gas (2DEG). The GaN FET has a barrier layer of III-N semiconductor material including aluminum and nitrogen over the channel layer. The GaN FET further has a p-type gate of III-N semiconductor material including gallium and nitrogen. A bottom surface of the gate, adjacent to the barrier layer, does not extend past a top surface of the barrier layer, located opposite from the channel layer. The GaN FET is free of a dielectric layer between the gate and the barrier layer.
    Type: Grant
    Filed: December 1, 2020
    Date of Patent: May 7, 2024
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Chang Soo Suh, Jungwoo Joh, Dong Seup Lee, Shoji Wada, Karen Hildegard Ralston Kirmse
  • Publication number: 20240120383
    Abstract: An electronic device includes an one of aluminum gallium nitride, aluminum nitride, indium aluminum nitride, or indium aluminum gallium nitride back barrier layer over a buffer structure, a gallium nitride layer over the back barrier layer, a hetero-epitaxy structure over the gallium nitride layer, first and second transistors over the hetero-epitaxy structure, and a hole injector having a doped gallium nitride structure over the hetero-epitaxy structure and a conductive structure partially over the doped gallium nitride structure to inject holes to form a hole layer proximate an interface of the back barrier layer and the buffer structure to mitigate vertical electric field back gating effects for the first transistor.
    Type: Application
    Filed: December 18, 2023
    Publication date: April 11, 2024
    Inventors: Dong Seup Lee, Qhalid Fareed, Sridhar Seetharaman, Jungwoo Joh, Chang Soo Suh
  • Publication number: 20240055488
    Abstract: A microelectronic device includes a GaN FET on a substrate such as silicon and a buffer layer of p-type GaN semiconductor material. The GaN FET includes a gate electrode extension of p-type GaN semiconductor material in electrical contact with the gate electrode. The gate electrode extension of p-type GaN semiconductor material in electrical contact with the gate electrode may improve the GaN FET characteristics such as off state leakage, subthreshold voltage and post stress Vt shift.
    Type: Application
    Filed: August 11, 2022
    Publication date: February 15, 2024
    Inventors: Dong Seup Lee, Chang Soo Suh
  • Publication number: 20240047529
    Abstract: GaN devices with a modified heterojunction structure and methods of making thereof are described. The GaN device comprises a heterojunction structure modified to include one or more deactivated regions. The heterojunction structure of the deactivated regions has different structural configurations than that of the as-grown heterojunction structure. The locally confined structural alteration of the heterojunction structure weakens or prohibits 2DEG formation in the deactivated regions. Moreover, the amount of net charges mapped to a field plate positioned above the heterojunction structure can be locally reduced or eliminated. Consequently, the electric field present between the heterojunction structure and the field plate can be reduced.
    Type: Application
    Filed: August 31, 2022
    Publication date: February 8, 2024
    Inventors: DONG SEUP LEE, CHANG SOO SUH, YOGANAND SARIPALLI, MENG-CHIA LEE, JUNGWOO JOH, JAMES TEHERANI, SANDEEP BAHL
  • Patent number: 11888027
    Abstract: An electronic device includes an one of aluminum gallium nitride, aluminum nitride, indium aluminum nitride, or indium aluminum gallium nitride back barrier layer over a buffer structure, a gallium nitride layer over the back barrier layer, a hetero-epitaxy structure over the gallium nitride layer, first and second transistors over the hetero-epitaxy structure, and a hole injector having a doped gallium nitride structure over the hetero-epitaxy structure and a conductive structure partially over the doped gallium nitride structure to inject holes to form a hole layer proximate an interface of the back barrier layer and the buffer structure to mitigate vertical electric field back gating effects for the first transistor.
    Type: Grant
    Filed: December 22, 2021
    Date of Patent: January 30, 2024
    Assignee: Texas Instruments Incorporated
    Inventors: Dong Seup Lee, Qhalid Fareed, Sridhar Seetharaman, Jungwoo Joh, Chang Soo Suh
  • Publication number: 20230197784
    Abstract: An electronic device includes an one of aluminum gallium nitride, aluminum nitride, indium aluminum nitride, or indium aluminum gallium nitride back barrier layer over a buffer structure, a gallium nitride layer over the back barrier layer, a hetero-epitaxy structure over the gallium nitride layer, first and second transistors over the hetero-epitaxy structure, and a hole injector having a doped gallium nitride structure over the hetero-epitaxy structure and a conductive structure partially over the doped gallium nitride structure to inject holes to form a hole layer proximate an interface of the back barrier layer and the buffer structure to mitigate vertical electric field back gating effects for the first transistor.
    Type: Application
    Filed: December 22, 2021
    Publication date: June 22, 2023
    Inventors: Dong Seup Lee, Qhalid Fareed, Sridhar Seetharaman, Jungwoo Joh, Chang Soo Suh
  • Publication number: 20230134698
    Abstract: A gallium nitride (“GaN”)-based semiconductor device, and method of forming the same. In one example, the semiconductor device includes a channel layer including GaN, and a barrier layer of a first III-N material over the channel layer. The semiconductor device also includes a cap layer of a second III-N material including indium over the barrier layer, wherein the cap layer may have the effect of modifying a threshold voltage and gate leakage current of the semiconductor device.
    Type: Application
    Filed: October 29, 2021
    Publication date: May 4, 2023
    Inventors: Jungwoo Joh, Sameer Prakash Pendharkar, Qhalid RS Fareed, Chang Soo Suh
  • Publication number: 20230101543
    Abstract: One example described herein includes an integrated circuit (IC) that includes a gallium-nitride (GaN) transistor device. The IC includes GaN active layers that define an active region, and a gate structure arranged on a surface of the active region. The IC also includes a source arranged on a first side of the gate structure and a drain arranged on a second side of the gate structure. The IC further includes at least one source field-plate structure conductively coupled to the source and a gate-level field-plate structure that is coupled to the source.
    Type: Application
    Filed: September 30, 2021
    Publication date: March 30, 2023
    Inventors: Dong Seup Lee, Jungwoo Joh, Chang Soo Suh
  • Publication number: 20220399328
    Abstract: A depletion-mode current source having a saturation current of sufficient accuracy for use as a pre-charge circuit in a start-up circuit of an AC-to-DC power converter is fabricated using an enhancement-mode-only process. The depletion-mode current source can be fabricated on the same integrated circuit (IC) as a gallium nitride field-effect transistor (FET) and resistive and capacitive components used in the start-up circuit, without affecting the enhancement-mode-only fabrication process by requiring additional masks or materials, as would be required to fabricate a depletion-mode FET on the same IC as an enhancement-mode FET. The current source includes a resistive patterned two-dimensional electron gas (2DEG) or two-dimensional hole gas (2DHG) channel coupled between two terminals and one or more metal field plates extending from one of the terminals and overlying the patterned area of the channel, the field plates being separated from the channel and from each other by dielectric layers.
    Type: Application
    Filed: December 10, 2021
    Publication date: December 15, 2022
    Inventors: Maik Peter Kaufmann, Michael Lueders, CHANG SOO SUH
  • Publication number: 20220216309
    Abstract: In a described example, an apparatus includes a transistor formed on a semiconductor substrate, the transistor including: a transistor gate and an extended drain between the transistor gate and a transistor drain contact; a transistor source contact coupled to a source contact probe pad; a first dielectric layer covering the semiconductor substrate and the transistor gate; a source field plate on the first dielectric layer and coupled to a source field plate probe pad spaced from and electrically isolated from the source contact probe pad; and the source field plate capacitively coupled through the first dielectric layer to a first portion of the extended drain.
    Type: Application
    Filed: March 21, 2022
    Publication date: July 7, 2022
    Inventors: Ramana Tadepalli, Chang Soo Suh
  • Publication number: 20220173234
    Abstract: A semiconductor device includes a gallium nitride based low threshold depletion mode transistor (GaN FET) with a threshold potential between ?10 volts and ?0.5 volts. The GaN FET has a channel layer of III-N semiconductor material including gallium and nitrogen that supports a two-dimensional electron gas (2 DEG). The GaN FET has a barrier layer of III-N semiconductor material including aluminum and nitrogen over the channel layer. The GaN FET further has a p-type gate of III-N semiconductor material including gallium and nitrogen. A bottom surface of the gate, adjacent to the barrier layer, does not extend past a top surface of the barrier layer, located opposite from the channel layer. The GaN FET is free of a dielectric layer between the gate and the barrier layer.
    Type: Application
    Filed: December 1, 2020
    Publication date: June 2, 2022
    Applicant: Texas Instruments Incorporated
    Inventors: Chang Soo Suh, Jungwoo Joh, Dong Seup Lee, Shoji Wada, Karen Hildegard Ralston Kirmse
  • Publication number: 20220130988
    Abstract: Fabrication methods, electronic devices and enhancement mode gallium nitride transistors include a gallium nitride interlayer between a hetero-epitaxy structure and a p-doped gallium nitride layer and/or between the p-doped gallium nitride layer and a gate structure to mitigate p-type dopant diffusion, improve current collapse performance, and mitigate positive-bias temperature instability. In certain examples, the interlayer or interlayers is/are fabricated using epitaxial deposition with no p-type dopant source. In certain fabrication process examples, epitaxial deposition or growth is interrupted after the depositing an aluminum gallium nitride layer of the hetero-epitaxy structure, after which growth is resumed to deposit the first gallium nitride interlayer over the aluminum gallium nitride layer to mitigate p-type dopant diffusion and current collapse.
    Type: Application
    Filed: October 27, 2020
    Publication date: April 28, 2022
    Applicant: Texas Instruments Incorporated
    Inventors: Qhalid RS Fareed, Dong Seup Lee, Jungwoo Joh, Chang Soo Suh
  • Patent number: 11302785
    Abstract: In a described example, an apparatus includes a transistor formed on a semiconductor substrate, the transistor including: a transistor gate and an extended drain between the transistor gate and a transistor drain contact; a transistor source contact coupled to a source contact probe pad; a first dielectric layer covering the semiconductor substrate and the transistor gate; a source field plate on the first dielectric layer and coupled to a source field plate probe pad spaced from and electrically isolated from the source contact probe pad; and the source field plate capacitively coupled through the first dielectric layer to a first portion of the extended drain.
    Type: Grant
    Filed: June 18, 2019
    Date of Patent: April 12, 2022
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Ramana Tadepalli, Chang Soo Suh
  • Patent number: 11177378
    Abstract: A High Electron Mobility Transistor (HEMT) includes an active layer on a substrate, and a Group IIIA-N barrier layer on the active layer. An isolation region is through the barrier layer to provide at least one isolated active area including the barrier layer on the active layer. A gate is over the barrier layer. A drain includes at least one drain finger including a fingertip having a drain contact extending into the barrier layer to contact to the active layer and a source having a source contact extending into the barrier layer to contact to the active layer. The source forms a loop that encircles the drain. The isolation region includes a portion positioned between the source and drain contact so that there is a conduction barrier in a length direction between the drain contact of the fingertip and the source.
    Type: Grant
    Filed: June 8, 2020
    Date of Patent: November 16, 2021
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Jungwoo Joh, Naveen Tipirneni, Chang Soo Suh, Sameer Pendharkar
  • Publication number: 20210280702
    Abstract: In some examples, a gallium nitride (GaN)-based transistor, comprises a substrate; a GaN layer supported by the substrate; an aluminum nitride gallium (AlGaN) layer supported by the GaN layer; a p-doped GaN structure supported by the AlGaN layer; and multiple p-doped GaN blocks supported by the AlGaN layer, each of the multiple p-doped GaN blocks physically separated from the remaining multiple p-doped GaN blocks, wherein first and second contours of a two-dimensional electron gas (2DEG) of the GaN-based transistor are at an interface of the AlGaN and GaN layers.
    Type: Application
    Filed: May 25, 2021
    Publication date: September 9, 2021
    Inventors: Chang Soo SUH, Sameer Prakash PENDHARKAR, Naveen TIPIRNENI, Jungwoo JOH
  • Patent number: 11049960
    Abstract: In some examples, a gallium nitride (GaN)-based transistor, comprises a substrate; a GaN layer supported by the substrate; an aluminum nitride gallium (AlGaN) layer supported by the GaN layer; a p-doped GaN structure supported by the AlGaN layer; and multiple p-doped GaN blocks supported by the AlGaN layer, each of the multiple p-doped GaN blocks physically separated from the remaining multiple p-doped GaN blocks, wherein first and second contours of a two-dimensional electron gas (2DEG) of the GaN-based transistor are at an interface of the AlGaN and GaN layers.
    Type: Grant
    Filed: March 6, 2019
    Date of Patent: June 29, 2021
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Chang Soo Suh, Sameer Prakash Pendharkar, Naveen Tipirneni, Jungwoo Joh
  • Publication number: 20200403071
    Abstract: In a described example, an apparatus includes a transistor formed on a semiconductor substrate, the transistor including: a transistor gate and an extended drain between the transistor gate and a transistor drain contact; a transistor source contact coupled to a source contact probe pad; a first dielectric layer covering the semiconductor substrate and the transistor gate; a source field plate on the first dielectric layer and coupled to a source field plate probe pad spaced from and electrically isolated from the source contact probe pad; and the source field plate capacitively coupled through the first dielectric layer to a first portion of the extended drain.
    Type: Application
    Filed: June 18, 2019
    Publication date: December 24, 2020
    Inventors: Ramana Tadepalli, Chang Soo Suh
  • Publication number: 20200303535
    Abstract: A High Electron Mobility Transistor (HEMT) includes an active layer on a substrate, and a Group IIIA-N barrier layer on the active layer. An isolation region is through the barrier layer to provide at least one isolated active area including the barrier layer on the active layer. A gate is over the barrier layer. A drain includes at least one drain finger including a fingertip having a drain contact extending into the barrier layer to contact to the active layer and a source having a source contact extending into the barrier layer to contact to the active layer. The source forms a loop that encircles the drain. The isolation region includes a portion positioned between the source and drain contact so that there is a conduction barrier in a length direction between the drain contact of the fingertip and the source.
    Type: Application
    Filed: June 8, 2020
    Publication date: September 24, 2020
    Inventors: Jungwoo JOH, Naveen TIPIRNENI, Chang Soo SUH, Sameer PENDHARKAR