Patents by Inventor Chao-Ching Cheng

Chao-Ching Cheng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210119131
    Abstract: A field effect transistor includes a semiconductor substrate, a first pad layer, carbon nanotubes and a gate structure. The first pad layer is disposed over the semiconductor substrate and comprises a 2D material. The carbon nanotubes are disposed over the first insulating pad layer. The gate structure is disposed over the semiconductor substrate and is vertically stacked with the carbon nanotubes. The carbon nanotubes extend from one side to an opposite side of the gate structure.
    Type: Application
    Filed: October 18, 2019
    Publication date: April 22, 2021
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Timothy Vasen, Chao-Ching Cheng, Matthias Passlack, Martin Christopher Holland, Tse-An Chen, Lain-Jong Li
  • Patent number: 10964817
    Abstract: A device with improved device performance, and method of manufacturing the same, are disclosed. An exemplary device includes a group III-V compound semiconductor substrate that includes a surface having a (110) crystallographic orientation, and a gate stack disposed over the group III-V compound semiconductor substrate. The gate stack includes a high-k dielectric layer disposed on the surface having the (110) crystallographic orientation, and a gate electrode disposed over the high-k dielectric layer.
    Type: Grant
    Filed: November 8, 2019
    Date of Patent: March 30, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chao-Ching Cheng, Chih-Hsin Ko, Hsingjen Wann
  • Patent number: 10964798
    Abstract: A semiconductor device and a method of manufacturing the same are disclosed. The semiconductor device includes semiconductor wires disposed over a substrate, a source/drain epitaxial layer in contact with the semiconductor wires, a gate dielectric layer disposed on and wrapping around each channel region of the semiconductor wires, a gate electrode layer disposed on the gate dielectric layer and wrapping around the each channel region, and dielectric spacers disposed in recesses formed toward the source/drain epitaxial layer.
    Type: Grant
    Filed: July 15, 2019
    Date of Patent: March 30, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chao-Ching Cheng, Yu-Lin Yang, Wei-Sheng Yun, Chen-Feng Hsu, Tzu-Chiang Chen
  • Publication number: 20210091229
    Abstract: A semiconductor device includes a substrate, a first poly-material pattern, a first conductive element, a first semiconductor layer, and a first gate structure. The first poly-material pattern is over and protrudes outward from the substrate, wherein the first poly-material pattern includes a first active portion and a first poly-material portion joined to the first active portion. The first conductive element is over the substrate, wherein the first conductive element includes the first poly-material portion and a first metallic conductive portion covering at least one of a top surface and a sidewall of the first poly-material portion. The first semiconductor layer is over the substrate and covers the first active portion of the first poly-material pattern and the first conductive element. The first gate structure is over the first semiconductor layer located within the first active portion.
    Type: Application
    Filed: September 22, 2019
    Publication date: March 25, 2021
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chao-Ching Cheng, Chun-Chieh Lu, Hung-Li Chiang, Tzu-Chiang Chen
  • Publication number: 20210083082
    Abstract: A process is provided to fabricate a finFET device having a semiconductor layer of a two-dimensional “2D” semiconductor material. The semiconductor layer of the 2D semiconductor material is a thin film layer formed over a dielectric fin-shaped structure. The 2D semiconductor layer extends over at least three surfaces of the dielectric fin structure, e.g., the upper surface and two sidewall surfaces. A vertical protrusion metal structure, referred to as “metal fin structure”, is formed about an edge of the dielectric fin structure and is used as a seed to grow the 2D semiconductor material.
    Type: Application
    Filed: September 17, 2019
    Publication date: March 18, 2021
    Inventors: Chao-Ching Cheng, Hung-Li Chiang, Chun-Chieh Lu, Ming-Yang Li, Tzu- Chiang Chen
  • Patent number: 10950693
    Abstract: In a method of manufacturing a semiconductor device, a fin structure, in which first semiconductor layers and second semiconductor layers are alternately stacked, is formed. A sacrificial gate structure is formed over the fin structure. The first semiconductor layers, the second semiconductor layer and an upper portion of the fin structure at a source/drain region of the fin structure, which is not covered by the sacrificial gate structure, are etched. A dielectric layer is formed over the etched upper portion of the fin structure. A source/drain epitaxial layer is formed. The source/drain epitaxial layer is connected to ends of the second semiconductor wires, and a bottom of the source/drain epitaxial layer is separated from the fin structure by the dielectric layer.
    Type: Grant
    Filed: April 20, 2020
    Date of Patent: March 16, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yu-Lin Yang, Chao-Ching Cheng, Tzu-Chiang Chen, I-Sheng Chen
  • Publication number: 20210066627
    Abstract: A method includes forming a first low-dimensional layer over an isolation layer, forming a first insulator over the first low-dimensional layer, forming a second low-dimensional layer over the first insulator, forming a second insulator over the second low-dimensional layer, and patterning the first low-dimensional layer, the first insulator, the second low-dimensional layer, and the second insulator into a protruding fin. Remaining portions of the first low-dimensional layer, the first insulator, the second low-dimensional layer, and the second insulator form a first low-dimensional strip, a first insulator strip, a second low-dimensional strip, and a second insulator strip, respectively. A transistor is then formed based on the protruding fin.
    Type: Application
    Filed: April 1, 2020
    Publication date: March 4, 2021
    Inventors: Chao-Ching Cheng, Tzu-Ang Chao, Chun-Chieh Lu, Hung-Li Chiang, Tzu-Chiang Chen, Lain-Jong Li
  • Publication number: 20210057539
    Abstract: In a method of manufacturing a semiconductor device, a fin structure, in which first semiconductor layers and second semiconductor layers are alternately stacked, is formed. A sacrificial gate structure is formed over the fin structure. A source/drain region of the fin structure, which is not covered by the sacrificial gate structure, is etched, thereby forming a source/drain space. The first semiconductor layers are laterally etched through the source/drain space. An inner spacer made of a dielectric material is formed on an end of each of the etched first semiconductor layers. A source/drain epitaxial layer is formed in the source/drain space to cover the inner spacer. A lateral end of each of the first semiconductor layers has a V-shape cross section after the first semiconductor layers are laterally etched.
    Type: Application
    Filed: October 26, 2020
    Publication date: February 25, 2021
    Inventors: Kuo-Cheng CHIANG, Chen-Feng HSU, Chao-Ching CHENG, Tzu-Chiang CHEN, Tung Ying LEE, Wei-Sheng YUN, Yu-Lin YANG
  • Patent number: 10930498
    Abstract: The current disclosure describes techniques for forming a low resistance junction between a source/drain region and a nanowire channel region in a gate-all-around FET device. A semiconductor structure includes a substrate, multiple separate semiconductor nanowire strips vertically stacked over the substrate, a semiconductor epitaxy region adjacent to and laterally contacting each of the multiple separate semiconductor nanowire strips, a gate structure at least partially over the multiple separate semiconductor nanowire strips, and a dielectric structure laterally positioned between the semiconductor epitaxy region and the gate structure. The first dielectric structure has a hat-shaped profile.
    Type: Grant
    Filed: October 10, 2019
    Date of Patent: February 23, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Tzu-Chung Wang, Chao-Ching Cheng, Tzu-Chiang Chen, Tung Ying Lee
  • Patent number: 10930795
    Abstract: A nanowire FET device includes a vertical stack of nanowire strips configured as the semiconductor body. One or more of the top nanowire strips are receded and are shorter than the rest of the nanowire strips stacked lower. Inner spacers are uniformly formed adjacent to the receded nanowire strips and the rest of the nanowire strips. Source/drain structures are formed outside the inner spacers and a gate structure is formed inside the inner spacers, which wraps around the nanowire strips.
    Type: Grant
    Filed: October 10, 2019
    Date of Patent: February 23, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: I-Sheng Chen, Chao-Ching Cheng, Tzu-Chiang Chen, Carlos H Diaz
  • Publication number: 20210036119
    Abstract: A gate-all-around structure is provided. The gate-all-around structure includes a plurality of nanostructures stacked over a substrate in a vertically direction, and the nanostructures extends from a gate region to a source/drain (S/D) region. The gate-all-around structure includes a gate structure formed in the gate region around the first nanostructures, and a S/D structure formed in the S/D region.
    Type: Application
    Filed: October 15, 2020
    Publication date: February 4, 2021
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chao-Ching CHENG, Yu-Lin YANG, I-Sheng CHEN, Tzu-Chiang CHEN
  • Publication number: 20210035633
    Abstract: A memory device that includes at least one memory cell is introduced. Each of the at least one memory cell is coupled to a bit line and a word line. Each of the at least one memory cell includes a memory element and a selector element, in which the memory element is configured to store data of the at least one memory cell. The selector element is coupled to the memory element in series and is configured to select the memory element for a read operation and amplify the data stored in the memory element in the read operation.
    Type: Application
    Filed: March 2, 2020
    Publication date: February 4, 2021
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hung-Li Chiang, Chao-Ching Cheng, Tzu-Chiang Chen, Yu-Sheng Chen, Hon-Sum Philip Wong
  • Patent number: 10886182
    Abstract: In a method of manufacturing a semiconductor device, a fin structure, in which first semiconductor layers containing Ge and second semiconductor layers are alternately stacked, is formed over a bottom fin structure. A Ge concentration in the first semiconductor layers is increased. A sacrificial gate structure is formed over the fin structure. A source/drain epitaxial layer is formed over a source/drain region of the fin structure. The sacrificial gate structure is removed. The second semiconductor layers in a channel region are removed, thereby releasing the first semiconductor layers in which the Ge concentration is increased. A gate structure is formed around the first semiconductor layers in which the Ge concentration is increased.
    Type: Grant
    Filed: May 31, 2019
    Date of Patent: January 5, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chao-Ching Cheng, I-Sheng Chen, Hung-Li Chiang, Tzu-Chiang Chen
  • Patent number: 10868127
    Abstract: Present disclosure provides gate-all-around structure including a first transistor. The first transistor includes a semiconductor substrate having a top surface, a first nanowire over the top surface of the semiconductor substrate and between a first source and a first drain, a first gate structure around the first nanowire, an inner spacer between the first gate structure and the first source and first drain, and an isolation layer between the top surface of the semiconductor substrate and the first source and the first drain. Present disclosure also provides a method for manufacturing the gate-all-around structure described herein.
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: December 15, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chao-Ching Cheng, Yu-Lin Yang, I-Sheng Chen, Tzu-Chiang Chen
  • Patent number: 10868114
    Abstract: The structure of a semiconductor device with isolation structures between FET devices and a method of fabricating the semiconductor device are disclosed. A method of fabricating the semiconductor device includes forming a fin structure on a substrate and forming polysilicon gate structures with a first threshold voltage on first fin portions of the fin structure. The method further includes forming doped fin regions with dopants of a first type conductivity on second fin portions of the fin structure, doping at least one of the polysilicon gate structures with dopants of a second type conductivity to adjust the first threshold voltage to a greater second threshold voltage, and replacing at least two of the polysilicon gate structures adjacent to the at least one of the polysilicon gate structures with metal gate structures having a third threshold voltage less than the first and second threshold voltages.
    Type: Grant
    Filed: May 22, 2019
    Date of Patent: December 15, 2020
    Inventors: Hung-Li Chiang, Chao-Ching Cheng, Tzu-Chiang Chen, I-Sheng Chen
  • Patent number: 10854708
    Abstract: A capacitor includes a first graphene structure having a first plurality of graphene layers. The capacitor further includes a dielectric layer over the first graphene structure. The capacitor further includes a second graphene structure over the dielectric layer, wherein the second graphene structure has a second plurality of graphene layers.
    Type: Grant
    Filed: November 13, 2019
    Date of Patent: December 1, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chewn-Pu Jou, Chih-Hsin Ko, Po-Wen Chiu, Chao-Ching Cheng, Chun-Chieh Lu, Chi-Feng Huang, Huan-Neng Chen, Fu-Lung Hsueh, Clement Hsingjen Wann
  • Publication number: 20200357914
    Abstract: A semiconductor device includes a fin field effect transistor (FinFET). The FinFET includes a channel disposed on a fin, a gate disposed over the channel and a source and drain. The channel includes at least two pairs of a first semiconductor layer and a second semiconductor layer formed on the first semiconductor layer. The first semiconductor layer has a different lattice constant than the second semiconductor layer. A thickness of the first semiconductor layer is three to ten times a thickness of the second semiconductor layer at least in one pair.
    Type: Application
    Filed: July 27, 2020
    Publication date: November 12, 2020
    Inventors: Chao-Ching CHENG, Chih Chieh YEH, Cheng-Hsien WU, Hung-Li CHIANG, Jung-Piao CHIU, Tzu-Chiang CHEN, Tsung-Lin LEE, Yu-Lin YANG, I-Sheng CHEN
  • Publication number: 20200343446
    Abstract: Various embodiments of the present disclosure are directed towards a resistive random access memory (RRAM) device including a scavenger layer. A bit line overlying a semiconductor substrate. A data storage layer around outer sidewalls and a top surface of the bit line. A word line overlying the data storage layer. A scavenger layer between the word line and the bit line such that a bottom surface of the scavenger layer is aligned with a bottom surface of the bit line. A lateral thickness of the scavenger layer is less than a vertical thickness of the scavenger layer.
    Type: Application
    Filed: April 25, 2019
    Publication date: October 29, 2020
    Inventors: Hung-Li Chiang, Chao-Ching Cheng, Tzu-Chiang Chen, Yu-Sheng Chen
  • Patent number: 10818777
    Abstract: In a method of manufacturing a semiconductor device, a fin structure, in which first semiconductor layers and second semiconductor layers are alternately stacked, is formed. A sacrificial gate structure is formed over the fin structure. A source/drain region of the fin structure, which is not covered by the sacrificial gate structure, is etched, thereby forming a source/drain space. The first semiconductor layers are laterally etched through the source/drain space. An inner spacer made of a dielectric material is formed on an end of each of the etched first semiconductor layers. A source/drain epitaxial layer is formed in the source/drain space to cover the inner spacer. A lateral end of each of the first semiconductor layers has a V-shape cross section after the first semiconductor layers are laterally etched.
    Type: Grant
    Filed: April 1, 2020
    Date of Patent: October 27, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Kuo-Cheng Chiang, Chen-Feng Hsu, Chao-Ching Cheng, Tzu-Chiang Chen, Tung Ying Lee, Wei-Sheng Yun, Yu-Lin Yang
  • Publication number: 20200335400
    Abstract: In a method, a fin structure, in which first semiconductor layers and second semiconductor layers are alternately stacked, is formed. A sacrificial gate structure is formed over the fin structure. The first semiconductor layers are etched at a source/drain region of the fin structure, which is not covered by the sacrificial gate structure, thereby forming a first source/drain space in which the second semiconductor layers are exposed. A dielectric layer is formed at the first source/drain space, thereby covering the exposed second semiconductor layers. The dielectric layer and part of the second semiconductor layers are etched, thereby forming a second source/drain space. A source/drain epitaxial layer is formed in the second source/drain space. At least one of the second semiconductor layers is in contact with the source/drain epitaxial layer, and at least one of the second semiconductor layers is separated from the source/drain epitaxial layer.
    Type: Application
    Filed: June 29, 2020
    Publication date: October 22, 2020
    Inventors: Hung-Li CHIANG, Chao-Ching CHENG, Chih-Liang CHEN, Tzu-Chiang CHEN, Ta-Pen GUO, Yu-Lin YANG, I-Sheng CHEN, Szu-Wei HUANG