Patents by Inventor Chao-Ta Huang

Chao-Ta Huang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10203252
    Abstract: A MEMS apparatus having measuring range selector including a sensor and an IC chip is provided. The sensor includes a sensing device. The IC chip includes a voltage range selector, an analog front end, a control device and an A/D converter. The sensing device is configured to detect the physical quantity and generate a sensing voltage. The voltage range selector is configured to select a sub-voltage range having a first upper-bound and a first lower-bound. The analog front end is configured to receive the sensing voltage and output a first voltage. The A/D converter has a full scale voltage range having a second lower-bound and a second upper-bound. A ratio of the full scale voltage range to the sub-voltage range is defined as a gain factor. A difference obtained by subtracting the first lower-bound from the first voltage is defined as a shift factor. The control device is configured to adjust the first voltage to the second voltage according to the gain factor and the shift factor.
    Type: Grant
    Filed: December 29, 2016
    Date of Patent: February 12, 2019
    Assignee: Industrial Technology Research Institute
    Inventors: Yu-Wen Hsu, Feng-Chia Hsu, Chao-Ta Huang, Shih-Ting Lin
  • Publication number: 20190012180
    Abstract: A control method of a memory storage device is provided and includes: detecting a first signal stream controlled by a host system; executing a boot code according to the first signal stream and entering a boot code mode; and receiving a command from the host system in the boot code mode and not executing a firmware code stored in a rewritable non-volatile memory module in the memory storage device. According, operational flexibility of the memory storage device may be enhanced.
    Type: Application
    Filed: August 29, 2017
    Publication date: January 10, 2019
    Applicant: PHISON ELECTRONICS CORP.
    Inventors: Ming-Fu Lai, Ying-Fu Chao, Chao-Ta Huang, Chun-Yu Ling
  • Patent number: 10132877
    Abstract: A micro-electromechanical apparatus may include a substrate, a first frame, a plurality of first anchors, a region and a plurality of pivot elements. The plurality of first anchors and the region is disposed on the substrate. The region is surrounded by the plurality of first anchors. Each of the pivot elements includes a pivot end and a rotary end. Each of the pivot ends is connected to a corresponding first anchor and each of the rotary ends is connected to the first frame such that the first frame is able to rotate with respect to an axis passing the region. The micro-electromechanical apparatus having the pivot elements and the region is adapted for detecting multi-degree physical quantities such as angular velocities in at least two axes, angular velocities and accelerations, angular velocities and Earth's magnetic field.
    Type: Grant
    Filed: December 19, 2014
    Date of Patent: November 20, 2018
    Assignee: Industrial Technology Research Institute
    Inventors: Chung-Yuan Su, Chao-Ta Huang, Sheng-Ren Chiu
  • Publication number: 20180188123
    Abstract: An interaction force detection apparatus includes a sensor, a driving element, a moving element, and a connecting element. The connecting element is connected to the driving element and the sensor. The driving element is adapted to interact with the moving element, so as to generate a pair of forces. The pair of forces includes a first force and a second force, and a magnitude of the first force is equal to that of the second force. The sensor detects the first force exerted on the driving element, and the second force is exerted on the moving element to generate a movement.
    Type: Application
    Filed: February 13, 2017
    Publication date: July 5, 2018
    Applicant: Industrial Technology Research Institute
    Inventors: Chung-Yuan Su, Chih-Yuan Chen, Chao-Ta Huang, Yu-Wen Hsu
  • Publication number: 20180188220
    Abstract: A MEMS apparatus for thermal energy control including a sensor and an IC chip is provided. The sensor includes a heating device for heating a sensing element and a detecting device for detecting a physical quantity. The IC chip includes a memory unit for storing a target value of the sensing element and a data processing unit for convert the physical quantity to a converted value, where a gap value is defined by subtracting the converted value from the target value. Besides, a control unit of the IC chip sets a parameter value according to the gap value, and a driving unit adjusts a quantity of thermal energy generated by the heating device according to the parameter value to reduce heating time and frequency of the heating device thereby reducing electrical power consumption. The MEMS apparatus is applicable to MEMS sensors requiring controlled operating temperature, such as a gas sensor.
    Type: Application
    Filed: December 29, 2016
    Publication date: July 5, 2018
    Applicant: Industrial Technology Research Institute
    Inventors: Yu-Wen Hsu, Ying-Che Lo, Chao-Ta Huang, Li-Tao Teng
  • Publication number: 20180188115
    Abstract: A MEMS apparatus having measuring range selector including a sensor and an IC chip is provided. The sensor includes a sensing device. The IC chip includes a voltage range selector, an analog front end, a control device and an A/D converter. The sensing device is configured to detect the physical quantity and generate a sensing voltage. The voltage range selector is configured to select a sub-voltage range having a first upper-bound and a first lower-bound. The analog front end is configured to receive the sensing voltage and output a first voltage. The A/D converter has a full scale voltage range having a second lower-bound and a second upper-bound. A ratio of the full scale voltage range to the sub-voltage range is defined as a gain factor. A difference obtained by subtracting the first lower-bound from the first voltage is defined as a shift factor. The control device is configured to adjust the first voltage to the second voltage according to the gain factor and the shift factor.
    Type: Application
    Filed: December 29, 2016
    Publication date: July 5, 2018
    Applicant: Industrial Technology Research Institute
    Inventors: Yu-Wen Hsu, Feng-Chia Hsu, Chao-Ta Huang, Shih-Ting Lin
  • Publication number: 20180186624
    Abstract: A MEMS apparatus includes a substrate, a cover disposed on the substrate, a movable mass disposed on the substrate, and an impact absorber disposed on the cover. The impact absorber includes a restraint, a stationary stopper disposed on a lower surface of the cover, a movable stopper, elastic elements connecting the restraint and the movable stopper, a supporting element connecting the restraint and the stationary stopper, and a space disposed between the stationary stopper and the movable stopper. The impact absorber is adapted to prevent the movable mass from impacting the cover. In addition, the supporting element may be made of an electrical insulation material to reduce electrostatic interaction between the movable mass and the movable stopper.
    Type: Application
    Filed: December 29, 2016
    Publication date: July 5, 2018
    Applicant: Industrial Technology Research Institute
    Inventors: Yu-Wen Hsu, Chin-Fu Kuo, Chao-Ta Huang
  • Patent number: 10011476
    Abstract: A MEMS apparatus includes a substrate, a cover disposed on the substrate, a movable mass disposed on the substrate, and an impact absorber disposed on the cover. The impact absorber includes a restraint, a stationary stopper disposed on a lower surface of the cover, a movable stopper, elastic elements connecting the restraint and the movable stopper, a supporting element connecting the restraint and the stationary stopper, and a space disposed between the stationary stopper and the movable stopper. The impact absorber is adapted to prevent the movable mass from impacting the cover. In addition, the supporting element may be made of an electrical insulation material to reduce electrostatic interaction between the movable mass and the movable stopper.
    Type: Grant
    Filed: December 29, 2016
    Date of Patent: July 3, 2018
    Assignee: Industrial Technology Research Institute
    Inventors: Yu-Wen Hsu, Chin-Fu Kuo, Chao-Ta Huang
  • Patent number: 9841281
    Abstract: A micro-electromechanical apparatus includes a rotary element, at least one restraint and at least two folded springs. The rotary element is capable of rotating with respect to an axis. The folded springs are symmetrically disposed about the axis. Each folded spring has a moving end and a fixed end, the moving end is connected to the rotary element, and the fixed end is connected to the at least one restraint. The moving end is not located on the axis, and the fixed end is not located on the axis. A moving distance is defined as a distance between the moving end and the axis, a fixed distance is defined as a distance between the fixed end and the axis. A spring length is defined as a distance between the moving end and the fixed end. The spring length is varied according to the rotation of the rotary element.
    Type: Grant
    Filed: November 25, 2014
    Date of Patent: December 12, 2017
    Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Chung-Yuan Su, Chun-Yin Tsai, Chao-Ta Huang
  • Publication number: 20170188413
    Abstract: A micro-electromechanical temperature control system including a micro-electromechanical apparatus is provided. The micro-electromechanical apparatus includes a heater and a thermal reservoir. A specific heat capacity of the thermal reservoir is greater than a specific heat capacity of the heater, so that a heating time and a heating frequency of the heater are reduced to save electrical power consumption. The micro-electromechanical temperature control system is adapted for a micro-electromechanical sensor that is required to be controlled at an operating temperature, such as a gas sensor.
    Type: Application
    Filed: August 29, 2016
    Publication date: June 29, 2017
    Applicant: Industrial Technology Research Institute
    Inventors: Yu-Wen Hsu, Chung-Yuan Su, Chao-Ta Huang
  • Publication number: 20170184628
    Abstract: A micro-electromechanical (MEMS) apparatus includes a substrate, two first anchors, a frame, and two elastic members. The substrate is provided with a reference point thereon. The frame surrounds the two first anchors, and each of the elastic members connects the corresponding first anchor and the frame. Each of the first anchors is disposed near the center of the MEMS apparatus to decrease an effect caused by warpage of the substrate. The MEMS apparatus can be applied to an MEMS sensor having a rotatable mass, such as a three-axis accelerometer or a magnetometer, to improve process yield, reliability, and measurement accuracy.
    Type: Application
    Filed: August 31, 2016
    Publication date: June 29, 2017
    Applicant: Industrial Technology Research Institute
    Inventors: Yu-Wen Hsu, Chung-Yuan Su, Chao-Ta Huang
  • Patent number: 9586815
    Abstract: A micro-electromechanical apparatus with multiple chambers and a method for manufacturing the same are provided, wherein various micro-electromechanical sensors are integrated into a single apparatus. For example, the micro-electromechanical apparatus in this disclosure may have two independent hermetically sealed chambers with different pressures, such that a micro-electromechanical barometer and a micro-electromechanical accelerometer can be operated in an optimal pressure circumstance.
    Type: Grant
    Filed: January 5, 2015
    Date of Patent: March 7, 2017
    Assignee: Industrial Technology Research Institute
    Inventors: Chung-Yuan Su, Chin-Fu Kuo, Tzung-Ching Lee, Chao-Ta Huang
  • Patent number: 9529012
    Abstract: A micro-electro mechanical apparatus with interdigitated spring including a substrate, at least one first mass, a movable electrode, a stationary electrode, an anchor and an interdigitated spring is provided. The movable electrode is disposed on the mass along an axial direction. The stationary electrode is disposed on the substrate along the axial direction, and the movable electrode and the stationary electrode have a critical gap there between. The interdigitated springs connects the mass and the anchor along the axial direction. The interdigitated spring includes first folded portions, first connecting portions, second folded portions, and second connecting portions. Each first folded portion includes two first spans and a first head portion. Each second folded portion includes two second spans and a second head portion. A width of the first span and a width of the second span are greater than the critical gap respectively.
    Type: Grant
    Filed: January 10, 2014
    Date of Patent: December 27, 2016
    Assignee: Industrial Technology Research Institute
    Inventors: Shih-Chieh Lin, Chao-Ta Huang, Chung-Yuan Su, Yu-Wen Hsu
  • Patent number: 9382112
    Abstract: A method for manufacturing a MEMS device includes the following operations. An SOI wafer including a device layer, an insulating layer and a handle layer is provided. The device layer is etched to form a recess and an annular protrusion surrounding the recess. A moving part and a spring of the MEMS device are formed on the recess by etching the device layer, the insulating layer and the handle layer. An anchor of the MEMS device is formed at the annular protrusion by etching the device layer, the insulating layer and the handle layer. The moving part and the anchor are connected to each other by the spring. The insulating layer is disposed between a first conductive portion and a second conductive portion of the moving part. The insulating layer is disposed between a first conductive portion and a second conductive portion of the anchor.
    Type: Grant
    Filed: February 19, 2014
    Date of Patent: July 5, 2016
    Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Yu Wen Hsu, Shih Ting Lin, Jen Yi Chen, Chao Ta Huang
  • Patent number: 9369788
    Abstract: An MEMS microphone package includes a substrate, an MEMS microphone, an IC chip and an electrically conductive cover. The substrate includes a first hole, an upper surface, a bottom surface, a side surface, a first electrically conductive layer and a second electrically conductive layer. The side surface has two sides connected to the upper surface and the bottom surface, respectively. The first electrically conductive layer is disposed on the upper surface. The second electrically conductive layer is disposed on the bottom surface. The MEMS microphone is electrically coupled to the substrate. The IC chip is electrically coupled to the substrate. The electrically conductive cover includes a second hole. The electrically conductive cover is bonded to the substrate to form a chamber for accommodating the MEMS microphone and the IC chip. The first hole and the second hole together form an acoustic hole.
    Type: Grant
    Filed: December 30, 2014
    Date of Patent: June 14, 2016
    Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Tzong-Che Ho, Yu-Wen Fan, Hong-Ren Chen, Chao-Ta Huang
  • Publication number: 20160165358
    Abstract: An MEMS microphone package includes a substrate, an MEMS microphone, an IC chip and an electrically conductive cover. The substrate includes a first hole, an upper surface, a bottom surface, a side surface, a first electrically conductive layer and a second electrically conductive layer. The side surface has two sides connected to the upper surface and the bottom surface, respectively. The first electrically conductive layer is disposed on the upper surface. The second electrically conductive layer is disposed on the bottom surface. The MEMS microphone is electrically coupled to the substrate. The IC chip is electrically coupled to the substrate. The electrically conductive cover includes a second hole. The electrically conductive cover is bonded to the substrate to form a chamber for accommodating the MEMS microphone and the IC chip. The first hole and the second hole together form an acoustic hole.
    Type: Application
    Filed: December 30, 2014
    Publication date: June 9, 2016
    Inventors: Tzong-Che HO, Yu-Wen FAN, Hong-Ren CHEN, Chao-Ta HUANG
  • Publication number: 20160137491
    Abstract: A micro-electromechanical apparatus with multiple chambers and a method for manufacturing the same are provided, wherein various micro-electromechanical sensors are integrated into a single apparatus. For example, the micro-electromechanical apparatus in this disclosure may have two independent hermetically sealed chambers with different pressures, such that a micro-electromechanical barometer and a micro-electromechanical accelerometer can be operated in an optimal pressure circumstance.
    Type: Application
    Filed: January 5, 2015
    Publication date: May 19, 2016
    Inventors: Chung-Yuan Su, Chin-Fu Kuo, Tzung-Ching Lee, Chao-Ta Huang
  • Patent number: 9249008
    Abstract: A MEMS device with a first electrode, a second electrode and a third electrode is disclosed. These electrodes are disposed on a substrate in such a manner that (1) a pointing direction of the first electrode is in parallel with a normal direction of the substrate, (2) a pointing direction of the third electrode is perpendicular to the pointing direction of the first electrode, (3) the second electrode includes a sensing portion and a stationary portion, (4) the first electrode and the sensing portion are configured to define a sensing capacitor, and (5) the third electrode and the stationary portion are configured to define a reference capacitor. This arrangement facilitates the MEMS device such as a differential pressure sensor, differential barometer, differential microphone and decoupling capacitor to be miniaturized.
    Type: Grant
    Filed: December 2, 2013
    Date of Patent: February 2, 2016
    Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Yu Wen Hsu, Chin Fu Kuo, Chao Ta Huang, Chun Kai Mao, Chin Hung Wang
  • Patent number: 9238576
    Abstract: A MEMS apparatus comprising composite vibrating unit and the manufacturing method thereof are disclosed. The vibrating unit includes a stiffness element on which a first material is disposed. A second material being a conductive material is disposed on the first material and is extended to the stiffness element to remove electric charge on first material. When a temperature is changed, a variation direction of a Young's modulus of the first material is opposite to a variation direction of a Young's modulus of the stiffness element. The unique attributes above allow vibrating unit of the MEMS apparatus such as resonator and gyroscope to have stable resonance frequency against the change of temperature.
    Type: Grant
    Filed: January 8, 2014
    Date of Patent: January 19, 2016
    Assignee: Industrial Technology Research Institute
    Inventors: Chung-Yuan Su, Chao-Ta Huang, Tzung-Ching Lee, Yu-Wen Hsu
  • Patent number: 9227840
    Abstract: A micro-electro mechanical apparatus having a PN-junction is provided. The micro-electro mechanical apparatus includes a movable mass, a conductive layer, and an electrode. The movable mass includes a P-type semiconductor layer and an N-type semiconductor layer. The PN-junction is formed between the P-type semiconductor layer and the N-type semiconductor layer. The micro-electro mechanical apparatus is capable of eliminating abnormal voltage signal when an alternating current passes through the conductive layer. The micro-electro mechanical apparatus is adapted to measure acceleration and magnetic field. The micro-electro mechanical apparatus can be other types of micro-electro mechanical apparatus such as micro-electro mechanical scanning micro-mirror.
    Type: Grant
    Filed: September 16, 2014
    Date of Patent: January 5, 2016
    Assignee: Industrial Technology Research Institute
    Inventors: Chung-Yuan Su, Chin-Fu Kuo, Chih-Yuan Chen, Chao-Ta Huang