Patents by Inventor Chao-Ta Huang

Chao-Ta Huang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200212826
    Abstract: A MEMS device includes a substrate, at least one anchor disposed on the substrate, a movable stage, a sensing chip disposed on the movable stage, and at least one elastic member connected with the movable stage and the anchor. The movable stage includes at least one electrode and at least one conductive connecting layer. The sensing chip includes at least one electrical interconnection connected with the conductive connecting layer. The elastic member includes at least one first electrical channel, a second electrical channel and an electrical insulation layer disposed between the first electrical channel and the second electrical channel. The first electrical channel is electrically connected with the electrical interconnection, and the second electrical channel is electrically connected with the electrode.
    Type: Application
    Filed: December 28, 2018
    Publication date: July 2, 2020
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Yu-Wen HSU, Che-Kai YEH, Chin-Fu KUO, Chao-Ta HUANG
  • Publication number: 20200209175
    Abstract: A MEMS apparatus with heater includes central part, periphery part, gap and first connecting part. Central part includes center of mass, heater and first joint. Heater is disposed inside central part. First joint is located on boundary of central part. Displacement of first joint is produced when central part is heated by heater. Periphery part surrounds central part. Gap surrounds central part, and is located between central part and periphery part. First connecting part connects central part and periphery part along first reference line and includes first inner connecting portion and first outer connecting portion. First inner connecting portion is connected to first joint. First outer connecting portion is connected to periphery part. First reference line passes through first joint, and first reference line is not parallel to line connecting center of mass and first joint.
    Type: Application
    Filed: March 29, 2019
    Publication date: July 2, 2020
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Peng-Jen CHEN, Bor-Shiun LEE, Chao-Ta HUANG
  • Publication number: 20200200629
    Abstract: A multi-axis force sensor including a central portion, an outer ring portion, and at least one sensing portion disposed along an axial direction of an axis is provided. The sensing portion includes a first and a second elements connected with each other, and at least one first and at least one second strain gauges. A first end surface of the first element is connected to the central portion, and a second end surface of the second element is connected to the outer ring portion. A normal vector of the first end surface is parallel to the axis and the axis passes through a centroid of the first end surface. When the first end surface is subjected to an axial force, a first strain of a first sensing region of the first element in the axial direction is smaller than a second strain of a second sensing region of the second element in the axial direction.
    Type: Application
    Filed: July 22, 2019
    Publication date: June 25, 2020
    Applicant: Industrial Technology Research Institute
    Inventors: Chih-Che Lin, Chih-Yuan Chen, Chung-Yuan Su, Chao-Ta Huang
  • Publication number: 20200200593
    Abstract: A vibration sensor with monitoring function is provided, which includes a substrate, a microelectromechanical vibration sensor chip and an application-specific integrated circuit chip. The microelectromechanical vibration sensor chip is disposed on the substrate and detects a vibration applied to an object to generate a plurality of vibration signals. The application-specific integrated circuit chip is disposed on the substrate and electrically connected to the microelectromechanical vibration sensor chip, which includes a sampling module, a transform module and an analysis module. The sampling module receives and converts the vibration signals into a plurality of digital signals, and filters the digital signals to generate a plurality of time-domain data. The transform module transforms the time-domain data into a frequency-domain data according to a predetermined number.
    Type: Application
    Filed: July 19, 2019
    Publication date: June 25, 2020
    Inventors: YU-WEN HSU, CHAO-TA HUANG, LI-TAO TENG
  • Patent number: 10631368
    Abstract: A micro-electromechanical temperature control system including a micro-electromechanical apparatus is provided. The micro-electromechanical apparatus includes a heater and a thermal reservoir. A specific heat capacity of the thermal reservoir is greater than a specific heat capacity of the heater, so that a heating time and a heating frequency of the heater are reduced to save electrical power consumption. The micro-electromechanical temperature control system is adapted for a micro-electromechanical sensor that is required to be controlled at an operating temperature, such as a gas sensor.
    Type: Grant
    Filed: August 29, 2016
    Date of Patent: April 21, 2020
    Assignee: Industrial Technology Research Institute
    Inventors: Yu-Wen Hsu, Chung-Yuan Su, Chao-Ta Huang
  • Patent number: 10622996
    Abstract: An adjustable sensing capacitance microelectromechanical system (MEMS) apparatus includes an ASIC and a sensing component. The ASIC includes a top surface, a readout circuit and a plurality of electrical switches. The sensing component, configured to sensing physical quantity, includes a fixed electrode and a movable electrode. The fixed electrode includes a plurality of electrode units. The movable electrode is able to be moved relative to the fixed electrode. The electrical switches are respectively and electrically coupled to the electrode units so as to control a working status of each of the electrode units, thereby changing a sensing capacitance of the MEMS sensor.
    Type: Grant
    Filed: March 29, 2019
    Date of Patent: April 14, 2020
    Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Yu-Wen Hsu, Chao-Ta Huang, Chin-Fu Kuo, Che-Kai Yeh
  • Publication number: 20200025281
    Abstract: A ball screw with force sensor in radial direction including a screw rod, a screw nut, a plurality of balls, and a force sensor is provided. The screw nut has a cavity. The cavity is extended along a radial direction from an outer surface of the screw nut. The force sensor is disposed in the cavity of the screw nut, and the force sensor includes a stationary base and an elastic component. The stationary base includes a displacement restraint, and the elastic component includes a contact end and a fixed end. The displacement restraint is coupled to the cavity to prevent the stationary base from being displaced in the radial direction for fixing stationary base firmly in the cavity. The fixed end is connected to the stationary base, and the contact end contacts a bottom surface of the cavity in order to sense a force along the radial direction.
    Type: Application
    Filed: December 17, 2018
    Publication date: January 23, 2020
    Applicant: Industrial Technology Research Institute
    Inventors: Chih-Yuan Chen, Chung-Yuan Su, Chien-Nan Yeh, Chao-Ta Huang, Yu-Wen Hsu
  • Patent number: 10436654
    Abstract: An interaction force detection apparatus includes a sensor, a driving element, a moving element, and a connecting element. The connecting element is connected to the driving element and the sensor. The driving element is adapted to interact with the moving element, so as to generate a pair of forces. The pair of forces includes a first force and a second force, and a magnitude of the first force is equal to that of the second force. The sensor detects the first force exerted on the driving element, and the second force is exerted on the moving element to generate a movement.
    Type: Grant
    Filed: February 13, 2017
    Date of Patent: October 8, 2019
    Assignee: Industrial Technology Research Institute
    Inventors: Chung-Yuan Su, Chih-Yuan Chen, Chao-Ta Huang, Yu-Wen Hsu
  • Patent number: 10393718
    Abstract: A MEMS apparatus for thermal energy control including a sensor and an IC chip is provided. The sensor includes a heating device for heating a sensing element and a detecting device for detecting a physical quantity. The IC chip includes a memory unit for storing a target value of the sensing element and a data processing unit for convert the physical quantity to a converted value, where a gap value is defined by subtracting the converted value from the target value. Besides, a control unit of the IC chip sets a parameter value according to the gap value, and a driving unit adjusts a quantity of thermal energy generated by the heating device according to the parameter value to reduce heating time and frequency of the heating device thereby reducing electrical power consumption. The MEMS apparatus is applicable to MEMS sensors requiring controlled operating temperature, such as a gas sensor.
    Type: Grant
    Filed: December 29, 2016
    Date of Patent: August 27, 2019
    Assignee: Industrial Technology Research Institute
    Inventors: Yu-Wen Hsu, Ying-Che Lo, Chao-Ta Huang, Li-Tao Teng
  • Publication number: 20190204064
    Abstract: A ball screw with tilt detector includes a screw rod, two screw nuts, a channel, a plurality of balls, and a tilt detector. The screw rod is extended along a direction of an axis. The two screw nuts are installed on the screw rod and capable of moving along the axis. The tilt detector is disposed between the two screw nuts to detect a tilt angle and a preload of the two screw nuts. The tilt detector includes a force receiving element, at least one first strain sensor, and at least one second strain sensor. The force receiving element includes a point symmetric ring-type structure, and the ring-type structure has two planes which are parallel to each other and respectively contact the two screw nuts.
    Type: Application
    Filed: September 20, 2018
    Publication date: July 4, 2019
    Applicant: Industrial Technology Research Institute
    Inventors: Chih-Yuan Chen, Chung-Yuan Su, Chih-Che Lin, Chao-Ta Huang
  • Publication number: 20190196520
    Abstract: An apparatus with two anchors including a housing, a movable element, and a rotary element is provided. The housing includes a first expansion unit, a second expansion unit, and a linkage. First alignment structures are disposed in the movable element and anti-rotation structures are disposed in the linkage. When the movable element and the rotary element enter the housing from two ends and are coupled along an axis, the movable element and the rotary element can approach each other to expand the first expansion unit and the second expansion unit to fonn two anchors. The apparatus :with two anchors secures a sensor in a variety of environments such as walls or machines. When the apparatus with two anchors fixes a sensor in a hole of a stamping machine, the impact force does not cause stress concentration on the sensor so as to improve the reliability of the sensor.
    Type: Application
    Filed: December 25, 2017
    Publication date: June 27, 2019
    Applicant: Industrial Technology Research Institute
    Inventors: Chien-Nan Yeh, Chung-Yuan Su, Chih-Yuan Chen, Chao-Ta Huang, Yu-Wen Hsu
  • Patent number: 10203252
    Abstract: A MEMS apparatus having measuring range selector including a sensor and an IC chip is provided. The sensor includes a sensing device. The IC chip includes a voltage range selector, an analog front end, a control device and an A/D converter. The sensing device is configured to detect the physical quantity and generate a sensing voltage. The voltage range selector is configured to select a sub-voltage range having a first upper-bound and a first lower-bound. The analog front end is configured to receive the sensing voltage and output a first voltage. The A/D converter has a full scale voltage range having a second lower-bound and a second upper-bound. A ratio of the full scale voltage range to the sub-voltage range is defined as a gain factor. A difference obtained by subtracting the first lower-bound from the first voltage is defined as a shift factor. The control device is configured to adjust the first voltage to the second voltage according to the gain factor and the shift factor.
    Type: Grant
    Filed: December 29, 2016
    Date of Patent: February 12, 2019
    Assignee: Industrial Technology Research Institute
    Inventors: Yu-Wen Hsu, Feng-Chia Hsu, Chao-Ta Huang, Shih-Ting Lin
  • Publication number: 20190012180
    Abstract: A control method of a memory storage device is provided and includes: detecting a first signal stream controlled by a host system; executing a boot code according to the first signal stream and entering a boot code mode; and receiving a command from the host system in the boot code mode and not executing a firmware code stored in a rewritable non-volatile memory module in the memory storage device. According, operational flexibility of the memory storage device may be enhanced.
    Type: Application
    Filed: August 29, 2017
    Publication date: January 10, 2019
    Applicant: PHISON ELECTRONICS CORP.
    Inventors: Ming-Fu Lai, Ying-Fu Chao, Chao-Ta Huang, Chun-Yu Ling
  • Patent number: 10132877
    Abstract: A micro-electromechanical apparatus may include a substrate, a first frame, a plurality of first anchors, a region and a plurality of pivot elements. The plurality of first anchors and the region is disposed on the substrate. The region is surrounded by the plurality of first anchors. Each of the pivot elements includes a pivot end and a rotary end. Each of the pivot ends is connected to a corresponding first anchor and each of the rotary ends is connected to the first frame such that the first frame is able to rotate with respect to an axis passing the region. The micro-electromechanical apparatus having the pivot elements and the region is adapted for detecting multi-degree physical quantities such as angular velocities in at least two axes, angular velocities and accelerations, angular velocities and Earth's magnetic field.
    Type: Grant
    Filed: December 19, 2014
    Date of Patent: November 20, 2018
    Assignee: Industrial Technology Research Institute
    Inventors: Chung-Yuan Su, Chao-Ta Huang, Sheng-Ren Chiu
  • Publication number: 20180188220
    Abstract: A MEMS apparatus for thermal energy control including a sensor and an IC chip is provided. The sensor includes a heating device for heating a sensing element and a detecting device for detecting a physical quantity. The IC chip includes a memory unit for storing a target value of the sensing element and a data processing unit for convert the physical quantity to a converted value, where a gap value is defined by subtracting the converted value from the target value. Besides, a control unit of the IC chip sets a parameter value according to the gap value, and a driving unit adjusts a quantity of thermal energy generated by the heating device according to the parameter value to reduce heating time and frequency of the heating device thereby reducing electrical power consumption. The MEMS apparatus is applicable to MEMS sensors requiring controlled operating temperature, such as a gas sensor.
    Type: Application
    Filed: December 29, 2016
    Publication date: July 5, 2018
    Applicant: Industrial Technology Research Institute
    Inventors: Yu-Wen Hsu, Ying-Che Lo, Chao-Ta Huang, Li-Tao Teng
  • Publication number: 20180188115
    Abstract: A MEMS apparatus having measuring range selector including a sensor and an IC chip is provided. The sensor includes a sensing device. The IC chip includes a voltage range selector, an analog front end, a control device and an A/D converter. The sensing device is configured to detect the physical quantity and generate a sensing voltage. The voltage range selector is configured to select a sub-voltage range having a first upper-bound and a first lower-bound. The analog front end is configured to receive the sensing voltage and output a first voltage. The A/D converter has a full scale voltage range having a second lower-bound and a second upper-bound. A ratio of the full scale voltage range to the sub-voltage range is defined as a gain factor. A difference obtained by subtracting the first lower-bound from the first voltage is defined as a shift factor. The control device is configured to adjust the first voltage to the second voltage according to the gain factor and the shift factor.
    Type: Application
    Filed: December 29, 2016
    Publication date: July 5, 2018
    Applicant: Industrial Technology Research Institute
    Inventors: Yu-Wen Hsu, Feng-Chia Hsu, Chao-Ta Huang, Shih-Ting Lin
  • Publication number: 20180188123
    Abstract: An interaction force detection apparatus includes a sensor, a driving element, a moving element, and a connecting element. The connecting element is connected to the driving element and the sensor. The driving element is adapted to interact with the moving element, so as to generate a pair of forces. The pair of forces includes a first force and a second force, and a magnitude of the first force is equal to that of the second force. The sensor detects the first force exerted on the driving element, and the second force is exerted on the moving element to generate a movement.
    Type: Application
    Filed: February 13, 2017
    Publication date: July 5, 2018
    Applicant: Industrial Technology Research Institute
    Inventors: Chung-Yuan Su, Chih-Yuan Chen, Chao-Ta Huang, Yu-Wen Hsu
  • Publication number: 20180186624
    Abstract: A MEMS apparatus includes a substrate, a cover disposed on the substrate, a movable mass disposed on the substrate, and an impact absorber disposed on the cover. The impact absorber includes a restraint, a stationary stopper disposed on a lower surface of the cover, a movable stopper, elastic elements connecting the restraint and the movable stopper, a supporting element connecting the restraint and the stationary stopper, and a space disposed between the stationary stopper and the movable stopper. The impact absorber is adapted to prevent the movable mass from impacting the cover. In addition, the supporting element may be made of an electrical insulation material to reduce electrostatic interaction between the movable mass and the movable stopper.
    Type: Application
    Filed: December 29, 2016
    Publication date: July 5, 2018
    Applicant: Industrial Technology Research Institute
    Inventors: Yu-Wen Hsu, Chin-Fu Kuo, Chao-Ta Huang
  • Patent number: 10011476
    Abstract: A MEMS apparatus includes a substrate, a cover disposed on the substrate, a movable mass disposed on the substrate, and an impact absorber disposed on the cover. The impact absorber includes a restraint, a stationary stopper disposed on a lower surface of the cover, a movable stopper, elastic elements connecting the restraint and the movable stopper, a supporting element connecting the restraint and the stationary stopper, and a space disposed between the stationary stopper and the movable stopper. The impact absorber is adapted to prevent the movable mass from impacting the cover. In addition, the supporting element may be made of an electrical insulation material to reduce electrostatic interaction between the movable mass and the movable stopper.
    Type: Grant
    Filed: December 29, 2016
    Date of Patent: July 3, 2018
    Assignee: Industrial Technology Research Institute
    Inventors: Yu-Wen Hsu, Chin-Fu Kuo, Chao-Ta Huang
  • Patent number: 9841281
    Abstract: A micro-electromechanical apparatus includes a rotary element, at least one restraint and at least two folded springs. The rotary element is capable of rotating with respect to an axis. The folded springs are symmetrically disposed about the axis. Each folded spring has a moving end and a fixed end, the moving end is connected to the rotary element, and the fixed end is connected to the at least one restraint. The moving end is not located on the axis, and the fixed end is not located on the axis. A moving distance is defined as a distance between the moving end and the axis, a fixed distance is defined as a distance between the fixed end and the axis. A spring length is defined as a distance between the moving end and the fixed end. The spring length is varied according to the rotation of the rotary element.
    Type: Grant
    Filed: November 25, 2014
    Date of Patent: December 12, 2017
    Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Chung-Yuan Su, Chun-Yin Tsai, Chao-Ta Huang