Patents by Inventor Charles G. Woychik

Charles G. Woychik has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10103094
    Abstract: An interconnect element includes a semiconductor or insulating material layer that has a first thickness and defines a first surface; a thermally conductive layer; a plurality of conductive elements; and a dielectric coating. The thermally conductive layer includes a second thickness of at least 10 microns and defines a second surface of the interconnect element. The plurality of conductive elements extend from the first surface of the interconnect element to the second surface of the interconnect element. The dielectric coating is between at least a portion of each conductive element and the thermally conductive layer.
    Type: Grant
    Filed: June 19, 2017
    Date of Patent: October 16, 2018
    Assignee: Invensas Corporation
    Inventors: Cyprian Emeka Uzoh, Pezhman Monadgemi, Terrence Caskey, Fatima Lina Ayatollahi, Belgacem Haba, Charles G. Woychik, Michael Newman
  • Publication number: 20180233447
    Abstract: In a microelectronic component having conductive vias (114) passing through a substrate (104) and protruding above the substrate, conductive features (120E.A, 120E.B) are provided above the substrate that wrap around the conductive vias' protrusions (114?) to form capacitors, electromagnetic shields, and possibly other elements. Other features and embodiments are also provided.
    Type: Application
    Filed: April 13, 2018
    Publication date: August 16, 2018
    Applicant: Invensas Corporation
    Inventors: Cyprian Emeka UZOH, Charles G. WOYCHIK, Arkalgud R. SITARAM, Hong SHEN, Zhuowen SUN, Liang WANG, Guilian GAO
  • Publication number: 20180219001
    Abstract: A device with thermal control is presented. In some embodiments, the device includes a plurality of die positioned in a stack, each die including a chip, interconnects through a thickness of the chip, metal features of electrically conductive composition connected to the interconnects on a bottom side of the chip, and adhesive or underfill layer on the bottom side of the chip. At least one thermally conducting layer, which can be a pyrolytic graphite layer, a layer formed of carbon nanotubes, or a graphene layer, is coupled between a top side of one of the plurality of die and a bottom side of an adjoining die in the stack. A heat sink can be coupled to the thermally conducting layer.
    Type: Application
    Filed: March 21, 2018
    Publication date: August 2, 2018
    Applicant: Invensas Corporation
    Inventors: Guilian Gao, Charles G. Woychik, Cyprian Emeka Uzoh, Liang Wang
  • Patent number: 9991231
    Abstract: An apparatus relates generally to an integrated circuit package. In such an apparatus, a package substrate has a first plurality of via structures extending from a lower surface of the package substrate to an upper surface of the package substrate. An die has a second plurality of via structures extending to a lower surface of the die. The lower surface of the die faces the upper surface of the package substrate in the integrated circuit package. The package substrate does not include a redistribution layer. The die and the package substrate are coupled to one another.
    Type: Grant
    Filed: August 11, 2016
    Date of Patent: June 5, 2018
    Assignee: Invensas Corporation
    Inventors: Charles G. Woychik, Cyprian Emeka Uzoh, Ron Zhang, Daniel Buckminster, Guilian Gao
  • Publication number: 20180130717
    Abstract: Dies (110) with integrated circuits are attached to a wiring substrate (120), possibly an interposer, and are protected by a protective substrate (410) attached to a wiring substrate. The dies are located in cavities in the protective substrate (the dies may protrude out of the cavities). In some embodiments, each cavity surface puts pressure on the die to strengthen the mechanical attachment of the die the wiring substrate, to provide good thermal conductivity between the dies and the ambient (or a heat sink), to counteract the die warpage, and possibly reduce the vertical size. The protective substrate may or may not have its own circuitry connected to the dies or to the wiring substrate. Other features are also provided.
    Type: Application
    Filed: January 9, 2018
    Publication date: May 10, 2018
    Applicant: INVENSAS CORPORATION
    Inventors: Hong SHEN, Charles G. WOYCHIK, Arkalgud R. SITARAM
  • Patent number: 9953957
    Abstract: A device with thermal control is presented. In some embodiments, the device includes a plurality of die positioned in a stack, each die including a chip, interconnects through a thickness of the chip, metal features of electrically conductive composition connected to the interconnects on a bottom side of the chip, and adhesive or underfill layer on the bottom side of the chip. At least one thermally conducting layer, which can be a pyrolytic graphite layer, a layer formed of carbon nanotubes, or a graphene layer, is coupled between a top side of one of the plurality of die and a bottom side of an adjoining die in the stack. A heat sink can be coupled to the thermally conducting layer.
    Type: Grant
    Filed: March 5, 2015
    Date of Patent: April 24, 2018
    Assignee: INVENSAS CORPORATION
    Inventors: Guilian Gao, Charles G. Woychik, Cyprian Emeka Uzoh, Liang Wang
  • Patent number: 9947618
    Abstract: In a microelectronic component having conductive vias (114) passing through a substrate (104) and protruding above the substrate, conductive features (120E.A, 120E.B) are provided above the substrate that wrap around the conductive vias' protrusions (114?) to form capacitors, electromagnetic shields, and possibly other elements. Other features and embodiments are also provided.
    Type: Grant
    Filed: June 9, 2017
    Date of Patent: April 17, 2018
    Inventors: Cyprian Emeka Uzoh, Charles G. Woychik, Arkalgud R. Sitaram, Hong Shen, Zhuowen Sun, Liang Wang, Guilian Gao
  • Patent number: 9905507
    Abstract: A combined interposer (120) includes multiple constituent interposers (120.i), each with its own substrate (120.iS) and with a circuit layer (e.g. redistribution layer) on top and/or bottom of the substrate. The top circuit layers can be part of a common circuit layer (120R.T) which can interconnect different interposers. Likewise, the bottom circuit layers can be part of a common circuit layer (120R.B). The constituent interposer substrates (120.iS) are initially part of a common wafer, and the common top circuit layer is fabricated before separation of the constituent interposer substrates from the wafer. Use of separated substrates reduces stress compared to use of a single large substrate. Other features are also provided.
    Type: Grant
    Filed: June 14, 2016
    Date of Patent: February 27, 2018
    Assignee: INVENSAS CORPORATION
    Inventors: Hong Shen, Zhuowen Sun, Charles G. Woychik, Arkalgud Sitaram
  • Patent number: 9899281
    Abstract: Dies (110) with integrated circuits are attached to a wiring substrate (120), possibly an interposer, and are protected by a protective substrate (410) attached to a wiring substrate. The dies are located in cavities in the protective substrate (the dies may protrude out of the cavities). In some embodiments, each cavity surface puts pressure on the die to strengthen the mechanical attachment of the die the wiring substrate, to provide good thermal conductivity between the dies and the ambient (or a heat sink), to counteract the die warpage, and possibly reduce the vertical size. The protective substrate may or may not have its own circuitry connected to the dies or to the wiring substrate. Other features are also provided.
    Type: Grant
    Filed: September 14, 2016
    Date of Patent: February 20, 2018
    Assignee: INVENSAS CORPORATION
    Inventors: Hong Shen, Charles G. Woychik, Arkalgud R. Sitaram
  • Patent number: 9893030
    Abstract: Microelectronic assemblies and methods for making the same are disclosed herein. In one embodiment, a method of forming a microelectronic assembly comprises assembling first and second components to have first major surfaces of the first and second components facing one another and spaced apart from one another by a predetermined spacing, the first component having first and second oppositely-facing major surfaces, a first thickness extending in a first direction between the first and second major surfaces, and a plurality of first metal connection elements at the first major surface, the second component having a plurality of second metal connection elements at the first major surface of the second component; and plating a plurality of metal connector regions each connecting and extending continuously between a respective first connection element and a corresponding second connection element opposite the respective first connection element in the first direction.
    Type: Grant
    Filed: July 18, 2016
    Date of Patent: February 13, 2018
    Assignee: Invensas Corporation
    Inventors: Cyprian Emeka Uzoh, Belgacem Haba, Charles G. Woychik, Michael Newman, Terrence Caskey
  • Patent number: 9887166
    Abstract: An assembly with modules (110, 1310) containing integrated circuits and attached to a wiring substrate (120) is reinforced by one or more reinforcement frames (410) attached to the wiring substrate. The modules are located in openings (e.g. cavities and/or through-holes 414) in the reinforcement frame. Other features are also provided.
    Type: Grant
    Filed: May 26, 2016
    Date of Patent: February 6, 2018
    Assignee: Invensas Corporation
    Inventors: Rajesh Katkar, Laura Wills Mirkarimi, Arkalgud R. Sitaram, Charles G. Woychik
  • Patent number: 9875955
    Abstract: A microelectronic assembly includes a substrate, a first and second microelectronic elements, a lead finger, electrical connections extending between contacts of the second microelectronic element and the lead fingers, and an encapsulant overlying at least portions of the first and second microelectronic elements, lead finger and electrical connections. The substrate has contacts at a first surface and terminals at an opposed second surface that are electrically connected with the substrate contacts. The first microelectronic element has contacts exposed at its front face. The front face of the first microelectronic element is joined to the substrate contacts. The second microelectronic element overlies the first microelectronic element and has contacts at a front face facing away from the substrate. The lead frame has lead fingers, wherein the second surface of the substrate and the lead fingers define a common interface for electrical interconnection to a component external to the microelectronic assembly.
    Type: Grant
    Filed: November 28, 2016
    Date of Patent: January 23, 2018
    Assignee: Tessera, Inc.
    Inventors: Kishor Desai, Qwai H. Low, Chok J. Chia, Charles G. Woychik, Huailiang Wei
  • Patent number: 9865548
    Abstract: An interconnect (124) suitable for attachment of integrated circuit assemblies to each other comprises a polymer member (130) which is conductive and/or is coated with a conductive material (144). Such interconnects replace metal bond wires in some embodiments. Other features are also provided.
    Type: Grant
    Filed: May 19, 2016
    Date of Patent: January 9, 2018
    Assignee: Invensas Corporation
    Inventors: Cyprian Emeka Uzoh, Rajesh Katkar, Charles G. Woychik, Guilian Gao, Arkalgud R. Sitaram
  • Patent number: 9859234
    Abstract: A method of processing an interconnection element can include providing a substrate element having front and rear opposite surfaces and electrically conductive structure, a first dielectric layer overlying the front surface and a plurality of conductive contacts at a first surface of the first dielectric layer, and a second dielectric layer overlying the rear surface and having a conductive element at a second surface of the second dielectric layer. The method can also include removing a portion of the second dielectric layer so as to reduce the thickness of the portion, and to provide a raised portion of the second dielectric layer having a first thickness and a lowered portion having a second thickness. The first thickness can be greater than the second thickness. At least a portion of the conductive element can be recessed below a height of the first thickness of the second dielectric layer.
    Type: Grant
    Filed: August 6, 2015
    Date of Patent: January 2, 2018
    Assignee: Invensas Corporation
    Inventors: Cyprian Emeka Uzoh, Guilian Gao, Bongsub Lee, Scott McGrath, Hong Shen, Charles G. Woychik, Arkalgud R. Sitaram, Akash Agrawal
  • Publication number: 20170374738
    Abstract: Interposer circuitry (130) is formed on a possibly sacrificial substrate (210) from a porous core (130?) covered by a conductive coating (130?) which increases electrical conductance. The core is printed from nanoparticle ink. Then a support (120S) is formed, e.g. by molding, to mechanically stabilize the circuitry. A magnetic field can be used to stabilize the circuitry while the circuitry or the support are being formed. Other features are also provided.
    Type: Application
    Filed: August 21, 2017
    Publication date: December 28, 2017
    Applicant: Invensas Corporation
    Inventors: Bong-Sub Lee, Cyprian Emeka Uzoh, Charles G. Woychik, Liang Wang, Laura Wills Mirkarimi, Arkalgud R. Sitaram
  • Publication number: 20170365546
    Abstract: An interconnect element includes a semiconductor or insulating material layer that has a first thickness and defines a first surface; a thermally conductive layer; a plurality of conductive elements; and a dielectric coating. The thermally conductive layer includes a second thickness of at least 10 microns and defines a second surface of the interconnect element. The plurality of conductive elements extend from the first surface of the interconnect element to the second surface of the interconnect element. The dielectric coating is between at least a portion of each conductive element and the thermally conductive layer.
    Type: Application
    Filed: June 19, 2017
    Publication date: December 21, 2017
    Applicant: Invensas Corporation
    Inventors: Cyprian Emeka Uzoh, Pezhman Monadgemi, Terrence Caskey, Fatima Lina Ayatollahi, Belgacem Haba, Charles G. Woychik, Michael Newman
  • Patent number: 9824974
    Abstract: Die (110) and/or undiced wafers and/or multichip modules (MCMs) are attached on top of an interposer (120) or some other structure (e.g. another integrated circuit) and are covered by an encapsulant (160). Then the interposer is thinned from below. Before encapsulation, a layer (410) more rigid than the encapsulant is formed on the interposer around the die to reduce or eliminate interposer dishing between the die when the interposer is thinned by a mechanical process (e.g. CMP). Other features are also provided.
    Type: Grant
    Filed: November 30, 2016
    Date of Patent: November 21, 2017
    Assignee: INVENSAS CORPORATION
    Inventors: Guilian Gao, Cyprian Emeka Uzoh, Charles G. Woychik, Hong Shen, Arkalgud R. Sitaram, Liang Wang, Akash Agrawal, Rajesh Katkar
  • Patent number: 9812406
    Abstract: Die (110) are attached to an interposer (420), and the interposer/die assembly is placed into a lid cavity (510). The lid (210) is attached to the top of the assembly, possibly to the encapsulant (474) at the top. The lid's legs (520) surround the cavity and extend down below the top surface of the interposer's substrate (420S), possibly to the level of the bottom surface of the substrate or lower. The legs (520) may or may not be attached to the interposer/die assembly. In fabrication, the interposer wafer (420SW) has trenches (478) which receive the lid's legs during the lid placement. The interposer wafer is later thinned to remove the interposer wafer portion below the legs and to dice the interposer wafer. The thinning process also exposes, on the bottom, conductive vias (450) passing through the interposer substrate. Other features are also provided.
    Type: Grant
    Filed: September 29, 2016
    Date of Patent: November 7, 2017
    Assignee: INVENSAS CORPORATION
    Inventors: Hong Shen, Liang Wang, Rajesh Katkar, Charles G. Woychik, Guilian Gao
  • Publication number: 20170317019
    Abstract: An integrated circuit (IC) package includes a first substrate having a backside surface and a top surface with a cavity disposed therein. The cavity has a floor defining a front side surface. A plurality of first electroconductive contacts are disposed on the front side surface, and a plurality of second electroconductive contacts are disposed on the back side surface. A plurality of first electroconductive elements penetrate through the first substrate and couple selected ones of the first and second electroconductive contacts to each other. A first die containing an IC is electroconductively coupled to corresponding ones of the first electroconductive contacts. A second substrate has a bottom surface that is sealingly attached to the top surface of the first substrate, and a dielectric material is disposed in the cavity so as to encapsulate the first die.
    Type: Application
    Filed: July 17, 2017
    Publication date: November 2, 2017
    Applicant: INVENSAS CORPORATION
    Inventors: Hong Shen, Charles G. Woychik, Arkalgud R. Sitaram, Guilian Gao
  • Patent number: 9780042
    Abstract: A composite interposer can include a substrate element and a support element. The substrate element can have first and second opposite surfaces defining a thickness of 200 microns or less, and can have a plurality of contacts exposed at the first surface and electrically conductive structure extending through the thickness. The support element can have a body of at least one of dielectric or semiconductor material exposed at a second surface of the support element, openings extending through a thickness of the body, conductive vias extending within at least some of the openings in a direction of the thickness of the body, and terminals exposed at a first surface of the support element. The second surface of the support element can be united with the second surface of the substrate element. The terminals can be electrically connected with the contacts through the conductive vias and the electrically conductive structure.
    Type: Grant
    Filed: June 2, 2016
    Date of Patent: October 3, 2017
    Assignee: Invensas Corporation
    Inventors: Charles G. Woychik, Cyprian Emeka Uzoh, Hiroaki Sato