Patents by Inventor Charles G. Woychik

Charles G. Woychik has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150340310
    Abstract: An interconnect element includes a semiconductor or insulating material layer that has a first thickness and defines a first surface; a thermally conductive layer; a plurality of conductive elements; and a dielectric coating. The thermally conductive layer includes a second thickness of at least 10 microns and defines a second surface of the interconnect element. The plurality of conductive elements extend from the first surface of the interconnect element to the second surface of the interconnect element. The dielectric coating is between at least a portion of each conductive element and the thermally conductive layer.
    Type: Application
    Filed: July 31, 2015
    Publication date: November 26, 2015
    Inventors: Cyprian Emeka Uzoh, Pezhman Monadgemi, Terrence Caskey, Fatima Lina Ayatollahi, Belgacem Haba, Charles G. Woychik, Michael Newman
  • Publication number: 20150333049
    Abstract: A workpiece (120) has protruding conductive features (140) at least on a first side. The second side is processed while the workpiece is held from the first side by a holder (220H). To prevent damage to the protruding features and flatten the workpiece (which could be otherwise warped), a spacer (210) is inserted between the workpiece and the holder. The spacer has holes (250) receiving the protruding features. The workpiece can be held by forces generated by the holder such as vacuum or an electrostatic force, without an adhesive. Other features and advantages are provided.
    Type: Application
    Filed: November 6, 2014
    Publication date: November 19, 2015
    Inventors: Charles G. Woychik, Eric S. Tosaya, Rajesh Katkar
  • Publication number: 20150327367
    Abstract: A combined interposer (120) includes multiple constituent interposers (120.i), each with its own substrate (120.iS) and with a circuit layer (e.g. redistribution layer) on top and/or bottom of the substrate. The top circuit layers can be part of a common circuit layer (120R.T) which can interconnect different interposers. Likewise, the bottom circuit layers can be part of a common circuit layer (120R.B). The constituent interposer substrates (120.iS) are initially part of a common wafer, and the common top circuit layer is fabricated before separation of the constituent interposer substrates from the wafer. Use of separated substrates reduces stress compared to use of a single large substrate. Other features are also provided.
    Type: Application
    Filed: May 12, 2014
    Publication date: November 12, 2015
    Inventors: Hong SHEN, Zhuowen Sun, Charles G. Woychik, Arkalgud Sitaram
  • Publication number: 20150270209
    Abstract: An apparatus relates generally to an integrated circuit package. In such an apparatus, a package substrate has a first plurality of via structures extending from a lower surface of the package substrate to an upper surface of the package substrate. An die has a second plurality of via structures extending to a lower surface of the die. The lower surface of the die faces the upper surface of the package substrate in the integrated circuit package. The package substrate does not include a redistribution layer. The die and the package substrate are coupled to one another.
    Type: Application
    Filed: March 20, 2014
    Publication date: September 24, 2015
    Applicant: INVENSAS CORPORATION
    Inventors: Charles G. WOYCHIK, Cyprian Emeka UZOH, Ron ZHANG, Daniel BUCKMINSTER, Guilian GAO
  • Publication number: 20150262972
    Abstract: An assembly with modules (110, 1310) containing integrated circuits and attached to a wiring substrate (120) is reinforced by one or more reinforcement frames (410) attached to the wiring substrate. The modules are located in openings (e.g. cavities and/or through-holes 414) in the reinforcement frame. Other features are also provided.
    Type: Application
    Filed: May 27, 2014
    Publication date: September 17, 2015
    Inventors: Rajesh KATKAR, Laura Wills MIRKARIMI, Arkalgud SITARAM, Charles G. WOYCHIK
  • Publication number: 20150262902
    Abstract: Dies (110) with integrated circuits are attached to a wiring substrate (120), possibly an interposer, and are protected by a protective substrate (410) attached to a wiring substrate. The dies are located in cavities in the protective substrate (the dies may protrude out of the cavities). In some embodiments, each cavity surface puts pressure on the die to strengthen the mechanical attachment of the die the wiring substrate, to provide good thermal conductivity between the dies and the ambient (or a heat sink), to counteract the die warpage, and possibly reduce the vertical size. The protective substrate may or may not have its own circuitry connected to the dies or to the wiring substrate. Other features are also provided.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 17, 2015
    Applicant: Invensas Corporation
    Inventors: Hong SHEN, Charles G. Woychik, Arkalgud R. Sitaram
  • Publication number: 20150255345
    Abstract: Methods of forming a microelectronic assembly and the resulting structures and devices are disclosed herein. In one embodiment, a method of forming a microelectronic assembly includes removing material exposed at portions of a surface of a substrate to form a processed substrate having a plurality of thinned portions separated by integral supporting portions of the processed substrate having a thickness greater than a thickness of the thinned portions, at least some of the thinned portions including a plurality of electrically conductive interconnects extending in a direction of the thicknesses of the thinned portions and exposed at the surface; and removing the supporting portions of the substrate to sever the substrate into a plurality of individual thinned portions, at least some individual thinned portions including the interconnects.
    Type: Application
    Filed: May 27, 2015
    Publication date: September 10, 2015
    Inventors: Cyprian Emeka Uzoh, Pezhman Monadgemi, Michael Newman, Charles G. Woychik, Terrence Caskey
  • Patent number: 9123780
    Abstract: A method for making an interconnect element includes depositing a thermally conductive layer on an in-process unit. The in-process unit includes a semiconductor material layer defining a surface and edges surrounding the surface, a plurality of conductive elements, each conductive element having a first portion extending through the semiconductor material layer and a second portion extending from the surface of the semiconductor material layer. Dielectric coatings extend over at least the second portion of each conductive element. The thermally conductive layer is deposited on the in-process unit at a thickness of at least 10 microns so as to overlie a portion of the surface of the semiconductor material layer between the second portions of the conductive elements with the dielectric coatings positioned between the conductive elements and the thermally conductive layer.
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: September 1, 2015
    Assignee: Invensas Corporation
    Inventors: Cyprian Emeka Uzoh, Pezhman Monadgemi, Terrence Caskey, Fatima Lina Ayatollahi, Belgacem Haba, Charles G. Woychik, Michael Newman
  • Publication number: 20150187673
    Abstract: A microelectronic component with circuitry includes a substrate (possibly semiconductor) having an opening in a top surface. The circuitry includes a conductive via (possibly metal) in the opening. The opening has a first sidewall of a first material, and the conductive via has a second sidewall of a second material (possibly metal). At least at one side of the opening, the first and second sidewalls are spaced from each other at the top surface of the substrate but the first and second sidewalls meet below the top surface of the substrate at a meeting location. Between the meeting location and the top surface of the substrate, the first and second sidewalls are separated by a third material (possibly foam) which is a dielectric different from the first material. The third material lowers thermal stress in case of thermal expansion compared to a structure in which the third material were replaced with the second material.
    Type: Application
    Filed: March 10, 2015
    Publication date: July 2, 2015
    Inventors: Cyprian Emeka Uzoh, Charles G. Woychik, Terrence Caskey, Kishor V. Desai, Huailiang Wei, Craig Mitchell, Belgacem Haba
  • Patent number: 9064933
    Abstract: Methods of forming a microelectronic assembly and the resulting structures and devices are disclosed herein. In one embodiment, a method of forming a microelectronic assembly includes removing material exposed at portions of a surface of a substrate to form a processed substrate having a plurality of thinned portions separated by integral supporting portions of the processed substrate having a thickness greater than a thickness of the thinned portions, at least some of the thinned portions including a plurality of electrically conductive interconnects extending in a direction of the thicknesses of the thinned portions and exposed at the surface; and removing the supporting portions of the substrate to sever the substrate into a plurality of individual thinned portions, at least some individual thinned portions including the interconnects.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: June 23, 2015
    Assignee: Invensas Corporation
    Inventors: Cyprian Emeka Uzoh, Pezhman Monadgemi, Michael Newman, Charles G. Woychik, Terrence Caskey
  • Publication number: 20150171058
    Abstract: A microelectronic assembly includes a substrate, a first and second microelectronic elements, a lead finger, electrical connections extending between contacts of the second microelectronic element and the lead fingers, and an encapsulant overlying at least portions of the first and second microelectronic elements, lead finger and electrical connections. The substrate has contacts at a first surface and terminals at an opposed second surface that are electrically connected with the substrate contacts. The first microelectronic element has contacts exposed at its front face. The front face of the first microelectronic element is joined to the substrate contacts. The second microelectronic element overlies the first microelectronic element and has contacts at a front face facing away from the substrate. The lead frame has lead fingers, wherein the second surface of the substrate and the lead fingers define a common interface for electrical interconnection to a component external to the microelectronic assembly.
    Type: Application
    Filed: February 23, 2015
    Publication date: June 18, 2015
    Inventors: Kishor Desai, Qwai H. Low, Chok J. Chia, Charles G. Woychik, Huailiang Wei
  • Publication number: 20150162241
    Abstract: Structures and methods of forming the same are disclosed herein. In one embodiment, a structure can comprise a region having first and second oppositely facing surfaces. A barrier region can overlie the region. An alloy region can overlie the barrier region. The alloy region can include a first metal and one or more elements selected from the group consisting of silicon (Si), germanium (Ge), indium (Id), boron (B), arsenic (As), antimony (Sb), tellurium (Te), or cadmium (Cd).
    Type: Application
    Filed: February 20, 2015
    Publication date: June 11, 2015
    Inventors: Cyprian Emeka Uzoh, Charles G. Woychik, Michael Newman, Pezhman Monadgemi, Terrence Caskey
  • Publication number: 20150162216
    Abstract: A composite interposer can include a substrate element and a support element. The substrate element can have first and second opposite surfaces defining a thickness of 200 microns or less, and can have a plurality of contacts exposed at the first surface and electrically conductive structure extending through the thickness. The support element can have a body of at least one of dielectric or semiconductor material exposed at a second surface of the support element, openings extending through a thickness of the body, conductive vias extending within at least some of the openings in a direction of the thickness of the body, and terminals exposed at a first surface of the support element. The second surface of the support element can be united with the second surface of the substrate element. The terminals can be electrically connected with the contacts through the conductive vias and the electrically conductive structure.
    Type: Application
    Filed: February 23, 2015
    Publication date: June 11, 2015
    Applicant: INVENSAS CORPORATION
    Inventors: Charles G. Woychik, Cyprian Emeka Uzoh, Hiroaki Sato
  • Publication number: 20150146393
    Abstract: A component includes a support structure having first and second spaced-apart and parallel surfaces and a plurality of conductive elements extending in a direction between the first and second surfaces. Each conductive element contains an alloy of a wiring metal selected from the group consisting of copper, aluminum, nickel and chromium, and an additive selected from the group consisting of Gallium, Germanium, Indium, Selenium, Tin, Sulfur, Silver, Phosphorus, and Bismuth. The alloy has a composition that varies with distance in at least one direction across the conductive element. A concentration of the additive is less than or equal to 5% of the total atomic mass of the conductive element, and a resistivity of the conductive element is between 2.5 and 30 micro-ohm-centimeter.
    Type: Application
    Filed: July 21, 2014
    Publication date: May 28, 2015
    Applicant: INVENSAS CORPORATION
    Inventors: CYPRIAN EMEKA UZOH, CHARLES G. WOYCHIK, TERRENCE CASKEY, BELGACEM HABA, HIROAKI SATO, PHILIP DAMBERG
  • Patent number: 9000600
    Abstract: A component can include a substrate and a conductive via extending within an opening in the substrate. The substrate can have first and second opposing surfaces. The opening can extend from the first surface towards the second surface and can have an inner wall extending away from the first surface. A dielectric material can be exposed at the inner wall. The conductive via can define a relief channel within the opening adjacent the first surface. The relief channel can have an edge within a first distance from the inner wall in a direction of a plane parallel to and within five microns below the first surface, the first distance being the lesser of one micron and five percent of a maximum width of the opening in the plane. The edge can extend along the inner wall to span at least five percent of a circumference of the inner wall.
    Type: Grant
    Filed: March 11, 2014
    Date of Patent: April 7, 2015
    Assignee: Invensas Corporation
    Inventors: Cyprian Emeka Uzoh, Charles G. Woychik, Terrence Caskey, Kishor V. Desai, Huailiang Wei, Craig Mitchell, Belgacem Haba
  • Patent number: 8981564
    Abstract: Structures and methods of forming the same are disclosed herein. In one embodiment, a structure can comprise a region having first and second oppositely facing surfaces. A barrier region can overlie the region. An alloy region can overlie the barrier region. The alloy region can include a first metal and one or more elements selected from the group consisting of silicon (Si), germanium (Ge), indium (Id), boron (B), arsenic (As), antimony (Sb), tellurium (Te), or cadmium (Cd).
    Type: Grant
    Filed: May 20, 2013
    Date of Patent: March 17, 2015
    Assignee: Invensas Corporation
    Inventors: Charles G. Woychik, Cyprian Emeka Uzoh, Michael Newman, Pezhman Monadgemi, Terrence Caskey
  • Patent number: 8963310
    Abstract: A microelectronic assembly includes a substrate, a first and second microelectronic elements, a lead finger, electrical connections extending between contacts of the second microelectronic element and the lead fingers, and an encapsulant overlying at least portions of the first and second microelectronic elements, lead finger and electrical connections. The substrate has contacts at a first surface and terminals at an opposed second surface that are electrically connected with the substrate contacts. The first microelectronic element has contacts exposed at its front face. The front face of the first microelectronic element is joined to the substrate contacts. The second microelectronic element overlies the first microelectronic element and has contacts at a front face facing away from the substrate. The lead frame has lead fingers, wherein the second surface of the substrate and the lead fingers define a common interface for electrical interconnection to a component external to the microelectronic assembly.
    Type: Grant
    Filed: August 24, 2011
    Date of Patent: February 24, 2015
    Assignee: Tessera, Inc.
    Inventors: Kishor Desai, Qwai H. Low, Chok J. Chia, Charles G. Woychik, Huailiang Wei
  • Patent number: 8963335
    Abstract: A composite interposer can include a substrate element and a support element. The substrate element can have first and second opposite surfaces defining a thickness of 200 microns or less, and can have a plurality of contacts exposed at the first surface and electrically conductive structure extending through the thickness. The support element can have a body of at least one of dielectric or semiconductor material exposed at a second surface of the support element, openings extending through a thickness of the body, conductive vias extending within at least some of the openings in a direction of the thickness of the body, and terminals exposed at a first surface of the support element. The second surface of the support element can be united with the second surface of the substrate element. The terminals can be electrically connected with the contacts through the conductive vias and the electrically conductive structure.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: February 24, 2015
    Assignee: Invensas Corporation
    Inventors: Charles G. Woychik, Cyprian Emeka Uzoh, Hiroaki Sato
  • Publication number: 20150044820
    Abstract: A microelectronic assembly including a dielectric region, a plurality of electrically conductive elements, an encapsulant, and a microelectronic element are provided. The encapsulant may have a coefficient of thermal expansion (CTE) no greater than twice a CTE associated with at least one of the dielectric region or the microelectronic element.
    Type: Application
    Filed: October 27, 2014
    Publication date: February 12, 2015
    Inventors: Charles G. Woychik, Cyprian Emeka Uzoh, Michael Newman, Terrence Caskey
  • Publication number: 20150014688
    Abstract: A method of attaching a microelectronic element to a substrate can include aligning the substrate with a microelectronic element, the microelectronic element having a plurality of spaced-apart electrically conductive bumps each including a bond metal, and reflowing the bumps. The bumps can be exposed at a front surface of the microelectronic element. The substrate can have a plurality of spaced-apart recesses extending from a first surface thereof. The recesses can each have at least a portion of one or more inner surfaces that are non-wettable by the bond metal of which the bumps are formed. The reflowing of the bumps can be performed so that at least some of the bond metal of each bump liquefies and flows at least partially into one of the recesses and solidifies therein such that the reflowed bond material in at least some of the recesses mechanically engages the substrate.
    Type: Application
    Filed: September 29, 2014
    Publication date: January 15, 2015
    Applicant: Invensas Corporation
    Inventors: Charles G. Woychik, Se Young Yang, Pezhman Monadgemi, Terrence Caskey