Patents by Inventor Charles H. Wallace

Charles H. Wallace has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200194309
    Abstract: Gate aligned contacts and methods of forming gate aligned contacts are described. For example, a method of fabricating a semiconductor structure includes forming a plurality of gate structures above an active region formed above a substrate. The gate structures each include a gate dielectric layer, a gate electrode, and sidewall spacers. A plurality of contact plugs is formed, each contact plug formed directly between the sidewall spacers of two adjacent gate structures of the plurality of gate structures. A plurality of contacts is formed, each contact formed directly between the sidewall spacers of two adjacent gate structures of the plurality of gate structures. The plurality of contacts and the plurality of gate structures are formed subsequent to forming the plurality of contact plugs.
    Type: Application
    Filed: February 25, 2020
    Publication date: June 18, 2020
    Inventors: Oleg GOLONZKA, Swaminathan SIVAKUMAR, Charles H. WALLACE, Tahir GHANI
  • Publication number: 20200185271
    Abstract: Conductive via and metal line end fabrication is described. In an example, an interconnect structure includes a first inter-layer dielectric (ILD) on a hardmask layer, where the ILD includes a first ILD opening and a second ILD opening. The interconnect structure further includes an etch stop layer (ESL) on the ILD layer, where the ESL includes a first ESL opening aligned with the first ILD opening to form a first via opening, and where the ESL layer includes a second ESL opening aligned with the second ILD opening. The interconnect structure further includes a first via in the first via opening, a second ILD layer on the first ESL, and a metal line in the second ILD layer, where the metal line is in contact with the first via, and where the metal line includes a first metal opening, and where the metal line includes a second metal opening aligned with the second ILD opening and the ESL opening to form a second via opening.
    Type: Application
    Filed: September 30, 2017
    Publication date: June 11, 2020
    Inventors: Charles H. WALLACE, Reken PATEL, Hyunsoo PARK, Mohit K. HARAN, Debashish BASU, Curtis W. WARD, Ruth A. Brain
  • Patent number: 10678137
    Abstract: Techniques related to multi-pass patterning lithography, device structures, and devices formed using such techniques are discussed. Such techniques include exposing a resist layer disposed over a grating pattern with non-reflecting radiation to generate an enhanced exposure portion within a trench of the grating pattern and developing the resist layer to form a pattern layer having a pattern structure within the trench of the grating pattern.
    Type: Grant
    Filed: September 22, 2014
    Date of Patent: June 9, 2020
    Assignee: Intel Corporation
    Inventors: Manish Chandhok, Todd R. Younkin, Sang H. Lee, Charles H. Wallace
  • Patent number: 10636700
    Abstract: Via CD control for BEOL interconnects is described. For example, a method of fabricating an interconnect structure includes forming a lower metallization layer comprising alternating metal lines and dielectric lines above a substrate. The method also includes forming an inter-layer dielectric layer above the metallization layer. The method also includes forming a first grating pattern above the inter-layer dielectric layer, orthogonal to the alternating metal lines and dielectric lines of the lower metallization layer. The method also includes forming a second grating pattern above the first grating pattern. The method also includes patterning the inter-layer dielectric layer using the first grating pattern and the second grating pattern to form via locations and line regions in the inter-layer dielectric layer. The method also includes forming metal vias and metal lines in the via locations and line regions, respectively, of the inter-layer dielectric layer.
    Type: Grant
    Filed: May 3, 2019
    Date of Patent: April 28, 2020
    Assignee: Intel Corporation
    Inventors: Paul A. Nyhus, Mohit K. Haran, Charles H. Wallace, Robert M. Bigwood, Deepak S. Rao, Alexander F. Kaplan
  • Patent number: 10607884
    Abstract: Gate aligned contacts and methods of forming gate aligned contacts are described. For example, a method of fabricating a semiconductor structure includes forming a plurality of gate structures above an active region formed above a substrate. The gate structures each include a gate dielectric layer, a gate electrode, and sidewall spacers. A plurality of contact plugs is formed, each contact plug formed directly between the sidewall spacers of two adjacent gate structures of the plurality of gate structures. A plurality of contacts is formed, each contact formed directly between the sidewall spacers of two adjacent gate structures of the plurality of gate structures. The plurality of contacts and the plurality of gate structures are formed subsequent to forming the plurality of contact plugs.
    Type: Grant
    Filed: May 14, 2019
    Date of Patent: March 31, 2020
    Assignee: Intel Corporation
    Inventors: Oleg Golonzka, Swaminathan Sivakumar, Charles H. Wallace, Tahir Ghani
  • Patent number: 10600678
    Abstract: Self-aligned isotropic etch processes for via and plug patterning for back end of line (BEOL) interconnects, and the resulting structures, are described. In an example, a method of fabricating an interconnect structure for an integrated circuit includes removing a sacrificial or permanent placeholder material of a subset of a plurality of holes or trenches through openings in a patterning layer. The method also includes removing the patterning layer and filling the subset of the plurality of holes or trenches with a permanent material.
    Type: Grant
    Filed: January 11, 2019
    Date of Patent: March 24, 2020
    Assignee: Intel Corporation
    Inventors: Charles H. Wallace, Elliot N. Tan, Paul A. Nyhus, Swaminathan Sivakumar
  • Publication number: 20200091101
    Abstract: Techniques are disclosed for realizing a two-dimensional target lithography feature/pattern by decomposing (splitting) it into multiple unidirectional target features that, when aggregated, substantially (e.g., fully) represent the original target feature without leaving an unrepresented remainder (e.g., a whole-number quantity of unidirectional target features). The unidirectional target features may be arbitrarily grouped such that, within a grouping, all unidirectional target features share a common target width value. Where multiple such groupings are provided, individual groupings may or may not have the same common target width value. In some cases, a series of reticles is provided, each reticle having a mask pattern correlating to a grouping of unidirectional target features. Exposure of a photoresist material via the aggregated series of reticles substantially (e.g., fully) produces the original target feature/pattern.
    Type: Application
    Filed: November 22, 2019
    Publication date: March 19, 2020
    Applicant: INTEL CORPORATION
    Inventors: CHARLES H. WALLACE, HOSSAM A. ABDALLAH, ELLIOT N. TAN, SWAMINATHAN SIVAKUMAR, OLEG GOLONZKA, ROBERT M. BIGWOOD
  • Publication number: 20200066629
    Abstract: Advanced lithography techniques including sub-10 nm pitch patterning and structures resulting therefrom are described. Self-assembled devices and their methods of fabrication are described.
    Type: Application
    Filed: December 23, 2016
    Publication date: February 27, 2020
    Inventors: Richard E. SCHENKER, Robert L. BRISTOL, Kevin L. LIN, Florian GSTREIN, James M. BLACKWELL, Marie KRYSAK, Manish CHANDHOK, Paul A. NYHUS, Charles H. WALLACE, Curtis W. WARD, Swaminathan SIVAKUMAR, Elliot N. TAN
  • Patent number: 10559529
    Abstract: Pitch division patterning approaches with increased overlay margin for back end of line (BEOL) interconnect fabrication, and the resulting structures, are described. In an example, a method includes forming a first plurality of conductive lines in a first sacrificial material formed above a substrate. The first plurality of conductive lines is formed along a direction of a BEOL metallization layer and is spaced apart by a pitch. The method also includes removing the first sacrificial material, forming a second sacrificial material adjacent to sidewalls of the first plurality of conductive lines, and then forming a second plurality of conductive lines adjacent the second sacrificial material. The second plurality of conductive lines is formed along the direction of the BEOL metallization layer, is spaced apart by the pitch, and is alternating with the first plurality of conductive lines. The method also includes removing the second sacrificial layer.
    Type: Grant
    Filed: March 28, 2016
    Date of Patent: February 11, 2020
    Assignee: Intel Corporation
    Inventors: Charles H. Wallace, Leonard P. Guler, Manish Chandhok, Paul A. Nyhus
  • Publication number: 20190363008
    Abstract: Conductive cap-based approaches for conductive via fabrication is described. In an example, an integrated circuit structure includes a plurality of conductive lines in an ILD layer above a substrate. Each of the conductive lines is recessed relative to an uppermost surface of the ILD layer. A plurality of conductive caps is on corresponding ones of the plurality of conductive lines, in recess regions above each of the plurality of conductive lines. A hardmask layer is on the plurality of conductive caps and on the uppermost surface of the ILD layer. The hardmask layer includes a first hardmask component on and aligned with the plurality of conductive caps, and a second hardmask component on an aligned with regions of the uppermost surface of the ILD layer. A conductive via is in an opening in the hardmask layer and on a conductive cap of one of the plurality of conductive lines.
    Type: Application
    Filed: December 23, 2016
    Publication date: November 28, 2019
    Inventors: Florian GSTREIN, Eungnak HAN, Rami HOURANI, Ruth A. BRAIN, Paul A. NYHUS, Manish CHANDHOK, Charles H. WALLACE, Chi-Hwa TSANG
  • Patent number: 10490519
    Abstract: Techniques are disclosed for realizing a two-dimensional target lithography feature/pattern by decomposing (splitting) it into multiple unidirectional target features that, when aggregated, substantially (e.g., fully) represent the original target feature without leaving an unrepresented remainder (e.g., a whole-number quantity of unidirectional target features). The unidirectional target features may be arbitrarily grouped such that, within a grouping, all unidirectional target features share a common target width value. Where multiple such groupings are provided, individual groupings may or may not have the same common target width value. In some cases, a series of reticles is provided, each reticle having a mask pattern correlating to a grouping of unidirectional target features. Exposure of a photoresist material via the aggregated series of reticles substantially (e.g., fully) produces the original target feature/pattern.
    Type: Grant
    Filed: March 31, 2017
    Date of Patent: November 26, 2019
    Assignee: INTEL CORPORATION
    Inventors: Charles H. Wallace, Hossam A. Abdallah, Elliot N. Tan, Swaminathan Sivakumar, Oleg Golonzka, Robert M. Bigwood
  • Patent number: 10409152
    Abstract: Techniques are disclosed for realizing a two-dimensional target lithography feature/pattern by decomposing (splitting) it into multiple unidirectional target features that, when aggregated, substantially (e.g., fully) represent the original target feature without leaving an unrepresented remainder (e.g., a whole-number quantity of unidirectional target features). The unidirectional target features may be arbitrarily grouped such that, within a grouping, all unidirectional target features share a common target width value. Where multiple such groupings are provided, individual groupings may or may not have the same common target width value. In some cases, a series of reticles is provided, each reticle having a mask pattern correlating to a grouping of unidirectional target features. Exposure of a photoresist material via the aggregated series of reticles substantially (e.g., fully) produces the original target feature/pattern.
    Type: Grant
    Filed: January 30, 2017
    Date of Patent: September 10, 2019
    Assignee: INTEL CORPORATION
    Inventors: Charles H. Wallace, Hossam A. Abdallah, Elliot N. Tan, Swaminathan Sivakumar, Oleg Golonzka, Robert M. Bigwood
  • Publication number: 20190267286
    Abstract: Gate aligned contacts and methods of forming gate aligned contacts are described. For example, a method of fabricating a semiconductor structure includes forming a plurality of gate structures above an active region formed above a substrate. The gate structures each include a gate dielectric layer, a gate electrode, and sidewall spacers. A plurality of contact plugs is formed, each contact plug formed directly between the sidewall spacers of two adjacent gate structures of the plurality of gate structures. A plurality of contacts is formed, each contact formed directly between the sidewall spacers of two adjacent gate structures of the plurality of gate structures. The plurality of contacts and the plurality of gate structures are formed subsequent to forming the plurality of contact plugs.
    Type: Application
    Filed: May 14, 2019
    Publication date: August 29, 2019
    Inventors: Oleg GOLONZKA, Swaminathan SIVAKUMAR, Charles H. WALLACE, Tahir GHANI
  • Publication number: 20190259656
    Abstract: Via CD control for BEOL interconnects is described. For example, a method of fabricating an interconnect structure includes forming a lower metallization layer comprising alternating metal lines and dielectric lines above a substrate. The method also includes forming an inter-layer dielectric layer above the metallization layer. The method also includes forming a first grating pattern above the inter-layer dielectric layer, orthogonal to the alternating metal lines and dielectric lines of the lower metallization layer. The method also includes forming a second grating pattern above the first grating pattern. The method also includes patterning the inter-layer dielectric layer using the first grating pattern and the second grating pattern to form via locations and line regions in the inter-layer dielectric layer. The method also includes forming metal vias and metal lines in the via locations and line regions, respectively, of the inter-layer dielectric layer.
    Type: Application
    Filed: May 3, 2019
    Publication date: August 22, 2019
    Inventors: Paul A. NYHUS, Mohit K. HARAN, Charles H. WALLACE, Robert M. BIGWOOD, Deepak S. RAO, Alexander F. KAPLAN
  • Publication number: 20190252208
    Abstract: Self-aligned via and plug patterning for back end of line (BEOL) interconnects is described. In an example, an interconnect structure for an integrated circuit includes a first layer of the interconnect structure disposed above a substrate. The first layer includes a grating of alternating metal lines and dielectric lines in a first direction. A second layer of the interconnect structure is disposed above the first layer. The second layer includes a grating of alternating metal lines and dielectric lines in a second direction, perpendicular to the first direction. Each metal line of the grating of the second layer is disposed on a recessed dielectric line having alternating distinct regions of a first dielectric material and a second dielectric material corresponding to the alternating metal lines and dielectric lines of the first layer of the interconnect structure.
    Type: Application
    Filed: April 22, 2019
    Publication date: August 15, 2019
    Inventors: Charles H. WALLACE, Paul A. NYHUS
  • Publication number: 20190206728
    Abstract: Methods and architectures for IC interconnect trenches, and trench plugs that define separations between two adjacent trench ends. Plugs and trenches may be defined through a multiple patterning process. An upper grating pattern may be summed with a plug keep pattern into a pattern accumulation layer. The pattern accumulation layer may be employed to define plug masks. A lower grating pattern may then be summed with the plug masks to define a pattern in trench ILD material, which can then be backfilled with interconnect metallization. As such, a complex damascene interconnect structure can be fabricated at the scaled-down geometries achievable with pitch-splitting techniques. In some embodiments, the trenches are located at spaces between first spacer masks defined in a patterning process associated with the first grating pattern while the plug masks are located based on a tone-inversion of second spacer masks associated with the second grating pattern.
    Type: Application
    Filed: September 30, 2016
    Publication date: July 4, 2019
    Inventors: Charles H. WALLACE, Marvin Y. PAIK, Hyunsoo PARK, Mohit K. HARAN, Alexander F. KAPLAN, Ruth A. BRAIN
  • Patent number: 10338474
    Abstract: Lithographic apparatuses suitable for, and methodologies involving, complementary e-beam lithography (CEBL) are described. Particular embodiments are directed to implementation of an underlying absorbing and/or conducting layer for ebeam direct write (EBDW) lithography.
    Type: Grant
    Filed: June 18, 2015
    Date of Patent: July 2, 2019
    Assignee: Intel Corporation
    Inventors: Shakul Tandon, Yan A. Borodovsky, Charles H. Wallace, Paul A. Nyhus
  • Patent number: 10340185
    Abstract: Gate aligned contacts and methods of forming gate aligned contacts are described. For example, a method of fabricating a semiconductor structure includes forming a plurality of gate structures above an active region formed above a substrate. The gate structures each include a gate dielectric layer, a gate electrode, and sidewall spacers. A plurality of contact plugs is formed, each contact plug formed directly between the sidewall spacers of two adjacent gate structures of the plurality of gate structures. A plurality of contacts is formed, each contact formed directly between the sidewall spacers of two adjacent gate structures of the plurality of gate structures. The plurality of contacts and the plurality of gate structures are formed subsequent to forming the plurality of contact plugs.
    Type: Grant
    Filed: June 15, 2017
    Date of Patent: July 2, 2019
    Assignee: Intel Corporation
    Inventors: Oleg Golonzka, Swaminathan Sivakumar, Charles H. Wallace, Tahir Ghani
  • Patent number: 10319625
    Abstract: Via CD control for BEOL interconnects is described. For example, a method of fabricating an interconnect structure includes forming a lower metallization layer comprising alternating metal lines and dielectric lines above a substrate. The method also includes forming an inter-layer dielectric layer above the metallization layer. The method also includes forming a first grating pattern above the inter-layer dielectric layer, orthogonal to the alternating metal lines and dielectric lines of the lower metallization layer. The method also includes forming a second grating pattern above the first grating pattern. The method also includes patterning the inter-layer dielectric layer using the first grating pattern and the second grating pattern to form via locations and line regions in the inter-layer dielectric layer. The method also includes forming metal vias and metal lines in the via locations and line regions, respectively, of the inter-layer dielectric layer.
    Type: Grant
    Filed: December 22, 2015
    Date of Patent: June 11, 2019
    Assignee: Intel Corporation
    Inventors: Paul A. Nyhus, Mohit K. Haran, Charles H. Wallace, Robert M. Bigwood, Deepak S. Rao, Alexander F. Kaplan
  • Patent number: 10297467
    Abstract: Self-aligned via and plug patterning for back end of line (BEOL) interconnects is described. In an example, an interconnect structure for an integrated circuit includes a first layer of the interconnect structure disposed above a substrate. The first layer includes a grating of alternating metal lines and dielectric lines in a first direction. A second layer of the interconnect structure is disposed above the first layer. The second layer includes a grating of alternating metal lines and dielectric lines in a second direction, perpendicular to the first direction. Each metal line of the grating of the second layer is disposed on a recessed dielectric line having alternating distinct regions of a first dielectric material and a second dielectric material corresponding to the alternating metal lines and dielectric lines of the first layer of the interconnect structure.
    Type: Grant
    Filed: April 18, 2017
    Date of Patent: May 21, 2019
    Assignee: Intel Corporation
    Inventors: Charles H. Wallace, Paul A. Nyhus