Patents by Inventor Charles R. Eddy, Jr.

Charles R. Eddy, Jr. has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9111786
    Abstract: A device with N-Channel and P-Channel III-Nitride field effect transistors comprising a non-inverted P-channel III-Nitride field effect transistor on a first nitrogen-polar nitrogen face III-Nitride material, a non-inverted N-channel III-Nitride field effect transistor, epitaxially grown, a first III-Nitride barrier layer, two-dimensional hole gas, second III-Nitride barrier layer, and a two-dimensional hole gas. A method of making complementary non-inverted P-channel and non-inverted N-channel III-Nitride FET comprising growing epitaxial layers, depositing oxide, defining opening, growing epitaxially a first nitrogen-polar III-Nitride material, buffer, back barrier, channel, spacer, barrier, and cap layer, and carrier enhancement layer, depositing oxide, growing AlN nucleation layer/polarity inversion layer, growing gallium-polar III-Nitride, including epitaxial layers, depositing dielectric, fabricating P-channel III-Nitride FET, and fabricating N-channel III-Nitride FET.
    Type: Grant
    Filed: December 19, 2014
    Date of Patent: August 18, 2015
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Francis J. Kub, Travis J. Anderson, Michael A. Mastro, Charles R. Eddy, Jr., Jennifer K. Hite
  • Patent number: 9105499
    Abstract: A device with complementary non-inverted N-channel and inverted P-channel field effect transistors comprising a layer grown epitaxially on a substrate, a barrier layer, a two-dimensional electron gas in the first III-Nitride epitaxial layer, a second III-Nitride material layer, and a two-dimensional hole gas in the second III-Nitride epitaxial layer. A device with complementary inverted N-channel and non-inverted P-channel field effect transistors comprising a nitrogen-polar III-Nitride layer grown epitaxially, a barrier material layer, a two-dimensional hole gas, and a two-dimensional electron gas in the second III-Nitride epitaxial layer. A method of making complementary inverted P-channel and non-inverted N-channel III-Nitride field effect transistors. A method of making a complementary non-inverted P-channel field effect transistor and inverted N-channel III-Nitride field effect transistor on a substrate.
    Type: Grant
    Filed: March 24, 2015
    Date of Patent: August 11, 2015
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Francis J. Kub, Travis J. Anderson, Michael A. Mastro, Charles R. Eddy, Jr., Jennifer K. Hite
  • Publication number: 20150221647
    Abstract: A device with N-Channel and P-Channel III-Nitride field effect transistors comprising a non-inverted P-channel III-Nitride field effect transistor on a first nitrogen-polar nitrogen face III-Nitride material, a non-inverted N-channel III-Nitride field effect transistor, epitaxially grown, a first III-Nitride barrier layer, two-dimensional hole gas, second III-Nitride barrier layer, and a two-dimensional hole gas. A method of making complementary non-inverted P-channel and non-inverted N-channel III-Nitride FET comprising growing epitaxial layers, depositing oxide, defining opening, growing epitaxially a first nitrogen-polar III-Nitride material, buffer, back barrier, channel, spacer, barrier, and cap layer, and carrier enhancement layer, depositing oxide, growing AlN nucleation layer/polarity inversion layer, growing gallium-polar III-Nitride, including epitaxial layers, depositing dielectric, fabricating P-channel III-Nitride FET, and fabricating N-channel III-Nitride FET.
    Type: Application
    Filed: December 19, 2014
    Publication date: August 6, 2015
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Francis J. Kub, Travis J. Anderson, Michael A. Mastro, Charles R. Eddy, JR., Jennifer K. Hite
  • Publication number: 20150221649
    Abstract: A device with complementary non-inverted N-channel and inverted P-channel field effect transistors comprising a layer grown epitaxially on a substrate, a barrier layer, a two-dimensional electron gas in the first III-Nitride epitaxial layer, a second III-Nitride material layer, and a two-dimensional hole gas in the second III-Nitride epitaxial layer. A device with complementary inverted N-channel and non-inverted P-channel field effect transistors comprising a nitrogen-polar III-Nitride layer grown epitaxially, a barrier material layer, a two-dimensional hole gas, and a two-dimensional electron gas in the second III-Nitride epitaxial layer. A method of making complementary inverted P-channel and non-inverted N-channel III-Nitride field effect transistors. A method of making a complementary non-inverted P-channel field effect transistor and inverted N-channel III-Nitride field effect transistor on a substrate.
    Type: Application
    Filed: March 24, 2015
    Publication date: August 6, 2015
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Francis J. Kub, Travis J. Anderson, Michael A. Mastro, Charles R. Eddy, JR., Jennifer K. Hite
  • Patent number: 9099375
    Abstract: A structure having: a substrate and a diamond layer on the substrate having diamond nanoparticles. The diamond nanoparticles are formed by colliding diamond particles with the substrate. A method of: directing an aerosol of submicron diamond particles toward a substrate, and forming on the substrate a diamond layer of diamond nanoparticles formed by the diamond particles colliding with the substrate.
    Type: Grant
    Filed: May 21, 2013
    Date of Patent: August 4, 2015
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Francis J. Kub, Charles R. Eddy, Jr., Boris N. Feygelson, Scooter Johnson
  • Publication number: 20150140789
    Abstract: Described herein is a method for growing InN, GaN, and AlN materials, the method comprising alternate growth of GaN and either InN or AlN to obtain a film of InxGa1?xN, AlxGa1?xN, AlxIn1?xN, or AlxInyGa1?(x+y)N
    Type: Application
    Filed: December 16, 2014
    Publication date: May 21, 2015
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Neeraj Nepal, Charles R. Eddy, JR., Nadeemmullah A. Mahadik, Syed B. Qadri, Michael J. Mehl
  • Patent number: 9028919
    Abstract: Processes for preparation of an epitaxial graphene surface to make it suitable for deposition of high-? oxide-based dielectric compounds such as Al2O3, HfO2, TaO5, or TiO2 are provided. A first process combines ex situ wet chemistry conditioning of an epitaxially grown graphene sample with an in situ pulsing sequence in the ALD reactor. A second process combines ex situ dry chemistry conditioning of the epitaxially grown graphene sample with the in situ pulsing sequence.
    Type: Grant
    Filed: June 26, 2014
    Date of Patent: May 12, 2015
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Nelson Garces, Virginia D. Wheeler, David Kurt Gaskill, Charles R. Eddy, Jr., Glenn G. Jernigan
  • Patent number: 9018056
    Abstract: A device with N-Channel and P-Channel III-Nitride field effect transistors comprising a non-inverted P-channel III-Nitride field effect transistor on a first nitrogen-polar nitrogen face III-Nitride material, a non-inverted N-channel III-Nitride field effect transistor, epitaxially grown, a first III-Nitride barrier layer, two-dimensional hole gas, second III-Nitride barrier layer, and a two-dimensional hole gas. A method of making complementary non-inverted P-channel and non-inverted N-channel III-Nitride FET comprising growing epitaxial layers, depositing oxide, defining opening, growing epitaxially a first nitrogen-polar III-Nitride material, buffer, back barrier, channel, spacer, barrier, and cap layer, and carrier enhancement layer, depositing oxide, growing AlN nucleation layer/polarity inversion layer, growing gallium-polar III-Nitride, including epitaxial layers, depositing dielectric, fabricating P-channel III-Nitride FET, and fabricating N-channel III-Nitride FET.
    Type: Grant
    Filed: January 31, 2014
    Date of Patent: April 28, 2015
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Francis J. Kub, Travis J. Anderson, Michael A. Mastro, Charles R. Eddy, Jr., Jennifer K. Hite
  • Patent number: 8999060
    Abstract: Millimeter-scale GaN single crystals in filamentary form, also known as GaN whiskers, grown from solution and a process for preparing the same at moderate temperatures and near atmospheric pressures are provided. GaN whiskers can be grown from a GaN source in a reaction vessel subjected to a temperature gradient at nitrogen pressure. The GaN source can be formed in situ as part of an exchange reaction or can be preexisting GaN material. The GaN source is dissolved in a solvent and precipitates out of the solution as millimeter-scale single crystal filaments as a result of the applied temperature gradient.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: April 7, 2015
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Boris N. Feigelson, Jennifer K. Hite, Francis J. Kub, Charles R. Eddy, Jr.
  • Patent number: 8920877
    Abstract: Processes for preparation of an epitaxial graphene surface to make it suitable for deposition of high-? oxide-based dielectric compounds such as Al2O3, HfO2, TaO5, or TiO2 are provided. A first process combines ex situ wet chemistry conditioning of an epitaxially grown graphene sample with an in situ pulsing sequence in the ALD reactor. A second process combines ex situ dry chemistry conditioning of the epitaxially grown graphene sample with the in situ pulsing sequence.
    Type: Grant
    Filed: July 1, 2013
    Date of Patent: December 30, 2014
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Nelson Garces, Virginia D. Wheeler, David Kurt Gaskill, Charles R. Eddy, Jr., Glenn G. Jernigan
  • Patent number: 8900939
    Abstract: High electron mobility transistors and fabrication processes are presented in which a barrier material layer of uniform thickness is provided for threshold voltage control under an enhanced channel charge inducing material layer (ECCIML) in source and drain regions with the ECCIML layer removed in the gate region.
    Type: Grant
    Filed: January 28, 2014
    Date of Patent: December 2, 2014
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Francis J. Kub, Travis Anderson, Karl D. Hobart, Michael A. Mastro, Charles R. Eddy, Jr.
  • Publication number: 20140308437
    Abstract: Processes for preparation of an epitaxial graphene surface to make it suitable for deposition of high-? oxide-based dielectric compounds such as Al2O3, HfO2, TaO5, or TiO2 are provided. A first process combines ex situ wet chemistry conditioning of an epitaxially grown graphene sample with an in situ pulsing sequence in the ALD reactor. A second process combines ex situ dry chemistry conditioning of the epitaxially grown graphene sample with the in situ pulsing sequence.
    Type: Application
    Filed: June 26, 2014
    Publication date: October 16, 2014
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Nelson Garces, Virginia D. Wheeler, David Kurt Gaskill, Charles R. Eddy, Jr., Glenn G. Jernigan
  • Publication number: 20140264380
    Abstract: A device with N-Channel and P-Channel III-Nitride field effect transistors comprising a non-inverted P-channel III-Nitride field effect transistor on a first nitrogen-polar nitrogen face III-Nitride material, a non-inverted N-channel III-Nitride field effect transistor, epitaxially grown, a first III-Nitride barrier layer, two-dimensional hole gas, second III-Nitride barrier layer, and a two-dimensional hole gas. A method of making complementary non-inverted P-channel and non-inverted N-channel III-Nitride FET comprising growing epitaxial layers, depositing oxide, defining opening, growing epitaxially a first nitrogen-polar III-Nitride material, buffer, back barrier, channel, spacer, barrier, and cap layer, and carrier enhancement layer, depositing oxide, growing AlN nucleation layer/polarity inversion layer, growing gallium-polar III-Nitride, including epitaxial layers, depositing dielectric, fabricating P-channel III-Nitride FET, and fabricating N-channel III-Nitride FET.
    Type: Application
    Filed: January 31, 2014
    Publication date: September 18, 2014
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Francis J. Kub, Travis J. Anderson, Michael A. Mastro, Charles R. Eddy, JR., Jennifer K. Hite
  • Publication number: 20140255705
    Abstract: A method of growing crystalline materials on two-dimensional inert materials comprising functionalizing a surface of a two-dimensional inert material, growing a nucleation layer on the functionalized surface, and growing a crystalline material. A crystalline material grown on a two-dimensional inert material made from the process comprising functionalizing a surface of a two-dimensional inert material, growing a nucleation layer on the functionalized surface, and growing a crystalline material.
    Type: Application
    Filed: January 30, 2014
    Publication date: September 11, 2014
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Neeraj Nepal, Virginia D. Wheeler, Charles R. Eddy, JR., Francis J. Kub, Travis J. Anderson, Michael A. Mastro, Rachael L. Myers-Ward, Sandra C. Hangarter
  • Publication number: 20140193965
    Abstract: A method of: providing an off-axis 4H—SiC substrate, and etching the surface of the substrate with hydrogen or an inert gas.
    Type: Application
    Filed: March 11, 2014
    Publication date: July 10, 2014
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Rachael L. Myers-Ward, David Kurt Gaskill, Charles R. Eddy, JR., Robert E. Stahlbush, Nadeemmullah A. Mahadik, Virginia D. Wheeler
  • Publication number: 20140190399
    Abstract: A method of: providing an off-axis silicon carbide substrate, and etching the surface of the substrate with a dry gas, hydrogen, or an inert gas.
    Type: Application
    Filed: March 11, 2014
    Publication date: July 10, 2014
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Rachael L. Myers-Ward, David Kurt Gaskill, Charles R. Eddy, JR., Robert E. Stahlbush, Nadeemmullah A. Mahadik, Virginia D. Wheeler
  • Publication number: 20140141580
    Abstract: High electron mobility transistors and fabrication processes are presented in which a barrier material layer of uniform thickness is provided for threshold voltage control under an enhanced channel charge inducing material layer (ECCIML) in source and drain regions with the ECCIML layer removed in the gate region.
    Type: Application
    Filed: January 28, 2014
    Publication date: May 22, 2014
    Inventors: Francis J. Kub, Travis Anderson, Karl D. Hobart, Michael A. Mastro, Charles R. Eddy, Jr.
  • Patent number: 8679248
    Abstract: Millimeter-scale GaN single crystals in filamentary form, also known as GaN whiskers, grown from solution and a process for preparing the same at moderate temperatures and near atmospheric pressures are provided. GaN whiskers can be grown from a GaN source in a reaction vessel subjected to a temperature gradient at nitrogen pressure. The GaN source can be formed in situ as part of an exchange reaction or can be preexisting GaN material. The GaN source is dissolved in a solvent and precipitates out of the solution as millimeter-scale single crystal filaments as a result of the applied temperature gradient.
    Type: Grant
    Filed: November 23, 2010
    Date of Patent: March 25, 2014
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Boris N. Feigelson, Jennifer K. Hite, Francis J. Kub, Charles R. Eddy, Jr.
  • Patent number: 8652255
    Abstract: A method of: flowing a silicon source gas, a carbon source gas, and a carrier gas into a growth chamber under growth conditions to epitaxial grow silicon carbide on a wafer in the growth chamber; stopping or reducing the flow of the silicon source gas to interrupt the silicon carbide growth and maintaining the flow of the carrier gas while maintaining an elevated temperature in the growth chamber for a period of time; and resuming the flow of the silicon source gas to reinitiate silicon carbide growth. The wafer remains in the growth chamber throughout the method.
    Type: Grant
    Filed: October 9, 2008
    Date of Patent: February 18, 2014
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Robert E Stahlbush, Brenda L VanMil, Kok-Keong Lew, Rachael L Myers-Ward, David Kurt Gaskill, Charles R. Eddy, Jr.
  • Patent number: 8648390
    Abstract: High electron mobility transistors and fabrication processes are presented in which a barrier material layer of uniform thickness is provided for threshold voltage control under an enhanced channel charge inducing material layer (ECCIML) in source and drain regions with the ECCIML layer removed in the gate region.
    Type: Grant
    Filed: February 25, 2013
    Date of Patent: February 11, 2014
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Francis J. Kub, Karl D. Hobart, Charles R. Eddy, Jr., Michael A. Mastro, Travis Anderson