Patents by Inventor Che-Chia Chang

Che-Chia Chang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11922863
    Abstract: A display panel and a pixel circuit thereof are provided. The pixel circuit includes a driving current generator, a pulse width signal generator, a voltage provider, and a current enabler. The driving current generator provides a driving current. The pulse width signal generator includes an output switch. The output switch is controlled by a control signal, and provides a pulse width signal according to the control signal. The voltage provider adjusts the control signal according to a data write-in signal and a pulse width modulation enable signal. The current enabler provides the driving current to a lighting component according to the pulse width signal and an amplitude modulation enable signal.
    Type: Grant
    Filed: December 22, 2022
    Date of Patent: March 5, 2024
    Assignee: AUO Corporation
    Inventors: Che-Wei Tung, Mei-Yi Li, Che-Chia Chang, Yu-Chieh Kuo, Yu-Zuo Lin
  • Patent number: 11887529
    Abstract: A pixel array is provided. The pixel array includes a plurality of pixels, wherein each of the pixels includes a light emitting diode, a first transistor, a second transistor, a third transistor, a fourth transistor, and a fifth transistor. The first transistor receives a first data signal and a first scan signal. The second transistor is coupled to the first transistor and an anode of the light emitting diode. The third transistor receives a system high voltage and a first control signal, and is coupled to the second transistor. The fourth transistor is coupled to an anode of a light emitting diode of an adjacent pixel, a control terminal of the third transistor, and a cathode of the light emitting diode. The fifth transistor is coupled to the cathode of the light emitting diode, and receives a second control signal and a system low voltage.
    Type: Grant
    Filed: April 19, 2022
    Date of Patent: January 30, 2024
    Assignee: Au Optronics Corporation
    Inventors: Ya-Jung Wang, Jing-Wun Jhang, Rong-Fu Lin, Nien-Chen Li, Hsien-Chun Wang, Che-Chia Chang, June Woo Lee, Hsin-Ying Lin, Chia-Ting Hsieh, Chien-Fu Huang, Sung-Yu Su
  • Publication number: 20230419883
    Abstract: A display device includes a multiple of light-emitting elements and a multiple of driving circuits. Each of the multiple of driving circuits is configured to generate a driving current flowing through one of the multiple of light-emitting elements. Each of the multiple of driving circuits includes a first transistor, a second transistor, a reset circuit, a first control circuit and a second control circuit. The driving current flows from a first system high voltage terminal through the first transistor, the second transistor and one of the multiple of light-emitting elements to a system low voltage terminal. The first control circuit is configured to control the first transistor to modulate pulse amplitude of the driving current. The second control circuit is configured to control the second transistor to modulate pulse width of the driving current.
    Type: Application
    Filed: September 7, 2023
    Publication date: December 28, 2023
    Inventors: Che-Chia CHANG, Shang-Jie WU, Yu-Chieh KUO, Hsien-Chun WANG, Sin-An LIN, Mei-Yi LI, Yu-Hsun CHIU, Ming-Hung CHUANG, Yi-Jung CHEN
  • Patent number: 11790832
    Abstract: A display device includes a multiple of light-emitting elements and a multiple of driving circuits. Each of the multiple of driving circuits is configured to generate a driving current to illuminate one of the multiple of light-emitting elements. Each of the multiple of driving circuits includes a first transistor, a second transistor, a reset circuit, a first control circuit and a second control circuit. The driving current flows from a first system high voltage terminal through the first transistor, the second transistor and one of the multiple of light-emitting elements to a system low voltage terminal. The first control circuit is configured to control the first transistor to modulate pulse amplitude of the driving current. The second control circuit is configured to control the second transistor to modulate pulse width of the driving current.
    Type: Grant
    Filed: September 8, 2021
    Date of Patent: October 17, 2023
    Assignee: AU OPTRONICS CORPORATION
    Inventors: Che-Chia Chang, Shang-Jie Wu, Yu-Chieh Kuo, Hsien-Chun Wang, Sin-An Lin, Mei-Yi Li, Yu-Hsun Chiu, Ming-Hung Chuang, Yi-Jung Chen
  • Patent number: 11636794
    Abstract: A pixel driving device includes at least one data line and at least one driver integrated circuit. The at least one data line includes a first area and a second area on both sides. The first area and the second area are separated by the at least one data line. The at least one driver integrated circuit includes a first circuit and a second circuit. The first circuit is disposed in the first area, is configured to receive at least one first high-frequency signal so as to at least one first driving signal. The second circuit is disposed in the second area, is coupled to the first circuit and is configured to receive at least one low-frequency signal.
    Type: Grant
    Filed: September 8, 2021
    Date of Patent: April 25, 2023
    Assignee: AU OPTRONICS CORPORATION
    Inventors: Che-Chia Chang, Yi-Jung Chen, Shang-Jie Wu, Yu-Chieh Kuo, Hsien-Chun Wang, Ming-Hung Chuang, Mei-Yi Li, Chen-Ying Chou, Sin-An Lin
  • Patent number: 11611024
    Abstract: A display device includes a substrate and pixels. The substrate has an intermediate region and a peripheral region. Each of the pixels includes sub-pixels. Each of the sub-pixels includes a pad group and a light emitting diode (LED) element. The pad group has a first pad and a second pad. The LED element is electrically connected to the first pad and the second pad. The pixels include standard pixels disposed in the intermediate region and peripheral pixels disposed in the peripheral region. The first pads and the second pads of the pad groups of the sub-pixels of each of the standard pixels are arranged in a first direction. The peripheral pixels include a first peripheral pixel. The first pads and the second pads of the pad groups of the sub-pixels of the first peripheral pixel are arranged in a second direction, and the first direction crosses over the second direction.
    Type: Grant
    Filed: September 2, 2020
    Date of Patent: March 21, 2023
    Assignee: Au Optronics Corporation
    Inventors: Shang-Jie Wu, Yu-Chieh Kuo, He-Yi Cheng, Che-Chia Chang, Yi-Jung Chen, Yi-Fan Chen, Yu-Hsun Chiu, Mei-Yi Li
  • Patent number: 11610533
    Abstract: A driving circuit includes a light-emitting element, a first transistor, a second transistor, a third transistor, a fourth transistor, a first capacitor and a regulator circuit. The first transistor, the second transistor and the light-emitting element are coupled in series between a first system voltage terminal and a second system voltage terminal. A first terminal of the first transistor is coupled to the first system voltage terminal. The third transistor is electrically coupled between a gate terminal and a second terminal of the first transistor. The fourth transistor is electrically coupled between the gate terminal of the first transistor and the second system voltage terminal. A first terminal of the first capacitor is electrically coupled to the gate terminal of the first transistor. A regulator circuit is electrically coupled to a second terminal of the first capacitor.
    Type: Grant
    Filed: September 8, 2021
    Date of Patent: March 21, 2023
    Assignee: AU OPTRONICS CORPORATION
    Inventors: Che-Chia Chang, Yi-Jung Chen, Shang-Jie Wu, Yu-Chieh Kuo, Hsien-Chun Wang, Ming-Hung Chuang, Mei-Yi Li, He-Yi Cheng, Yi-Fan Chen
  • Patent number: 11600221
    Abstract: A display apparatus includes a substrate and pixels disposed on the substrate. Each of the pixels includes sub-pixels. The substrate has an intermediate region and a peripheral region, where the peripheral region is located between an edge of the substrate and the intermediate region. The pixels include standard pixels disposed in the intermediate region and peripheral pixels disposed in the peripheral region. A color displayed by a sub-pixel of a standard pixel and a color displayed by a sub-pixel of a peripheral pixel are the same, and a distance between a second transistor of the sub-pixel of the standard pixel and a pad of the sub-pixel of the standard pixel is not equal to a distance between a second transistor of the sub-pixel of the peripheral pixel and a pad of the sub-pixel of the peripheral pixel.
    Type: Grant
    Filed: November 5, 2021
    Date of Patent: March 7, 2023
    Assignee: Au Optronics Corporation
    Inventors: Shang-Jie Wu, Yu-Chieh Kuo, He-Yi Cheng, Che-Chia Chang, Yi-Jung Chen, Yi-Fan Chen, Yu-Hsun Chiu, Mei-Yi Li
  • Patent number: 11552230
    Abstract: A pixel array substrate includes a base, pixel structures, first bonding pads, first wirings, and a first testing element. The pixel structures are disposed on an active area of a first surface of the base. The first bonding pads are disposed on a peripheral region of the first surface. Each of the first wirings is disposed on a corresponding first bonding pad, a first sidewall of the base, and a corresponding second bonding pad. The first testing element is disposed on the active area of the first surface and has a first testing line. The first testing line is electrically connected to at least one of the first bonding pads, and an end of the first testing line is substantially aligned with an edge of the base.
    Type: Grant
    Filed: August 31, 2020
    Date of Patent: January 10, 2023
    Assignee: Au Optronics Corporation
    Inventors: Shang-Jie Wu, Hao-An Chuang, Yu-Chieh Kuo, He-Yi Cheng, Che-Chia Chang, Yi-Jung Chen, Yi-Fan Chen, Yu-Hsun Chiu, Mei-Yi Li, Yu-Chin Wu
  • Patent number: 11514852
    Abstract: A pixel array is provided. The pixel array includes a plurality of red pixels, a plurality of green pixels, and a plurality of blue pixels. Each green pixel includes a light emitting diode (LED), a first transistor, a second transistor, a third transistor, and a fourth transistor. The LED receives a system low voltage. The first transistor receives a first data signal and a first scan signal. The second transistor is coupled to a second end of the first transistor and the anode of the light emitting diode. The third transistor receives a system high voltage and a first control signal, and is coupled to a first end of the second transistor. The fourth transistor is coupled to the anode of the light-emitting diode of an adjacent green pixel, a control terminal of the third transistor, and the anode of the light-emitting diode.
    Type: Grant
    Filed: April 20, 2022
    Date of Patent: November 29, 2022
    Assignee: Au Optronics Corporation
    Inventors: Ya-Jung Wang, Jing-Wun Jhang, Rong-Fu Lin, Nien-Chen Li, Hsien-Chun Wang, Che-Chia Chang, June Woo Lee, Hsin-Ying Lin, Chia-Ting Hsieh, Chien-Fu Huang, Sung-Yu Su
  • Publication number: 20220335887
    Abstract: A pixel array is provided. The pixel array includes a plurality of red pixels, a plurality of green pixels, and a plurality of blue pixels. Each green pixel includes a light emitting diode (LED), a first transistor, a second transistor, a third transistor, and a fourth transistor. The LED receives a system low voltage. The first transistor receives a first data signal and a first scan signal. The second transistor is coupled to a second end of the first transistor and the anode of the light emitting diode. The third transistor receives a system high voltage and a first control signal, and is coupled to a first end of the second transistor. The fourth transistor is coupled to the anode of the light-emitting diode of an adjacent green pixel, a control terminal of the third transistor, and the anode of the light-emitting diode.
    Type: Application
    Filed: April 20, 2022
    Publication date: October 20, 2022
    Applicant: Au Optronics Corporation
    Inventors: Ya-Jung Wang, Jing-Wun Jhang, Rong-Fu Lin, Nien-Chen Li, Hsien-Chun Wang, Che-Chia Chang, June Woo Lee, Hsin-Ying Lin, Chia-Ting Hsieh, Chien-Fu Huang, Sung-Yu Su
  • Publication number: 20220335886
    Abstract: A pixel array is provided. The pixel array includes a plurality of pixels, wherein each of the pixels includes a light emitting diode, a first transistor, a second transistor, a third transistor, a fourth transistor, and a fifth transistor. The first transistor receives a first data signal and a first scan signal. The second transistor is coupled to the first transistor and an anode of the light emitting diode. The third transistor receives a system high voltage and a first control signal, and is coupled to the second transistor. The fourth transistor is coupled to an anode of a light emitting diode of an adjacent pixel, a control terminal of the third transistor, and a cathode of the light emitting diode. The fifth transistor is coupled to the cathode of the light emitting diode, and receives a second control signal and a system low voltage.
    Type: Application
    Filed: April 19, 2022
    Publication date: October 20, 2022
    Applicant: Au Optronics Corporation
    Inventors: Ya-Jung Wang, Jing-Wun Jhang, Rong-Fu Lin, Nien-Chen Li, Hsien-Chun Wang, Che-Chia Chang, June Woo Lee, Hsin-Ying Lin, Chia-Ting Hsieh, Chien-Fu Huang, Sung-Yu Su
  • Patent number: 11443675
    Abstract: A shift register circuit includes a driving signal generating circuit, a coupling circuit, and a sweep signal generating circuit. The driving signal generating circuit is configured to receive a plurality of first clock signals, a low voltage source, an initial signal, and a first high voltage source so as to output a driving signal. The coupling circuit is coupled to the driving signal generating circuit. The coupling circuit is configured to transmit the low voltage source. The sweep signal generating circuit is coupled to the coupling circuit. The sweep signal generating circuit is configured to receive a second clock signal, the low voltage source, and a second high voltage source so as to output a sweep signal. A waveform of the sweep signal includes an oblique waveform. The first high voltage source and the second high voltage source are electrically independent of each other.
    Type: Grant
    Filed: September 8, 2021
    Date of Patent: September 13, 2022
    Assignee: AU OPTRONICS CORPORATION
    Inventors: Che-Chia Chang, Yi-Jung Chen, Shang-Jie Wu, Yu-Chieh Kuo, Hsien-Chun Wang, Ming-Hung Chuang, Mei-Yi Li, Sin-An Lin, Chen-Ying Chou
  • Patent number: 11403993
    Abstract: A light-emitting diode display device and a light-emission control method thereof are provided. The light-emitting diode display device includes a timing controller, multiple display pixels, and a scanning circuit. The display pixels form multiple display rows. The scanning circuit generates multiple scan signals and multiple light-emission signals that respectively drive the display rows. During a first data-writing time period of a first frame period, the timing controller provides multiple writing data to be respectively written into the display rows. During a light-emitting time period, the scanning circuit drives each of the light-emission signals to generate multiple pulses periodically according to a set period to drive the corresponding display rows. The light-emitting time period is after the first data-writing time period and before a second data-writing time period of a second frame period ends.
    Type: Grant
    Filed: March 3, 2021
    Date of Patent: August 2, 2022
    Assignee: Au Optronics Corporation
    Inventors: Yu-Chieh Kuo, Yu-Hsun Chiu, Kai-Hsiang Liu, Che-Chia Chang, Shang-Jie Wu, Mei-Yi Li, Peng-Bo Xi, Chin I Chiang, Yan-Ru Chen, Ting-Wei Guo, Chia-Ting Hsieh
  • Publication number: 20220223085
    Abstract: A shift register circuit includes a driving signal generating circuit, a coupling circuit, and a sweep signal generating circuit. The driving signal generating circuit is configured to receive a plurality of first clock signals, a low voltage source, an initial signal, and a first high voltage source so as to output a driving signal. The coupling circuit is coupled to the driving signal generating circuit. The coupling circuit is configured to transmit the low voltage source. The sweep signal generating circuit is coupled to the coupling circuit. The sweep signal generating circuit is configured to receive a second clock signal, the low voltage source, and a second high voltage source so as to output a sweep signal. A waveform of the sweep signal includes an oblique waveform. The first high voltage source and the second high voltage source are electrically independent of each other.
    Type: Application
    Filed: September 8, 2021
    Publication date: July 14, 2022
    Inventors: Che-Chia CHANG, Yi-Jung CHEN, Shang-Jie WU, Yu-Chieh KUO, Hsien-Chun WANG, Ming-Hung CHUANG, Mei-Yi LI, Sin-An LIN, Chen-Ying CHOU
  • Publication number: 20220223086
    Abstract: A pixel driving device includes at least one data line and at least one driver integrated circuit. The at least one data line includes a first area and a second area on both sides. The first area and the second area are separated by the at least one data line. The at least one driver integrated circuit includes a first circuit and a second circuit. The first circuit is disposed in the first area, is configured to receive at least one first high-frequency signal so as to at least one first driving signal. The second circuit is disposed in the second area, is coupled to the first circuit and is configured to receive at least one low-frequency signal.
    Type: Application
    Filed: September 8, 2021
    Publication date: July 14, 2022
    Inventors: Che-Chia CHANG, Yi-Jung CHEN, Shang-Jie WU, Yu-Chieh KUO, Hsien-Chun WANG, Ming-Hung CHUANG, Mei-Yi LI, Chen-Ying CHOU, Sin-An LIN
  • Patent number: 11386825
    Abstract: A multiplexer circuit and a display panel having the multiplexer circuit are provided. The multiplexer circuit includes a plurality of first transistors, a plurality of first control lines, a plurality of second control lines, a plurality of first transmission lines, and a plurality of second transmission lines. The first transistors are sequentially arranged along a first direction. The first control lines extend along the first direction and are disposed on a first side of the first transistors. The second control lines extend along the first direction and are disposed on a second side of the first transistors. The first transmission lines are respectively coupled between control terminals of a first group of the first transistors and the first control lines. The second transmission lines are respectively coupled to control terminals of a second group of the first transistors and the second control lines.
    Type: Grant
    Filed: March 26, 2020
    Date of Patent: July 12, 2022
    Assignee: Au Optronics Corporation
    Inventors: Che-Chia Chang, Ming-Hung Chuang
  • Patent number: 11361701
    Abstract: The present disclosure relates to a driving circuit including a pulse amplitude modulation (PAM) circuit and a pulse width modulation (PWM) circuit. The PAM circuit includes a first transistor, a first capacitor, and a second transistor. The PWM circuit includes a second capacitor, a third transistor, and a fourth transistor. The first capacitor's first terminal is connected to the first transistor's gate. The second transistor's first terminal is connected to the first capacitor's first terminal, and the second transistor's second terminal is connected to the first transistor's second terminal. The third transistor's gate is connected to the second capacitor's second terminal. The fourth transistor's first terminal is connected to the third transistor's gate, the fourth transistor's second terminal is connected to the third transistor's second terminal, and the fourth transistor's gate is connected to the second transistor's gate and configured to receive a first control signal.
    Type: Grant
    Filed: October 26, 2021
    Date of Patent: June 14, 2022
    Assignee: AU OPTRONICS CORPORATION
    Inventors: Che-Wei Tung, Shang-Jie Wu, Yu-Chieh Kuo, Yu-Hsun Chiu, Che-Chia Chang, Yu-Zuo Lin, Chen-Ying Chou, Yi-Fan Chen
  • Patent number: 11348509
    Abstract: A display device includes multiple shift register groups, multiple multiplexer groups, a driver IC, and multiple pixel circuits. The driver IC is configured to control the multiple shift register groups and the multiple multiplexer groups. A shift register group of the multiple shift register groups and a multiplexer group of the multiple multiplexer groups cooperatively drive a part of pixel circuits of the multiple pixel circuits. When the shift register group and the multiplexer group are enabled in a first time period, other shift register groups and other multiplexer groups are enabled in a second time period within the first time period. The first time period is longer than the second time period to render the part of pixel circuits and another part of pixel circuits to respectively have a first frame rate and a second frame rate.
    Type: Grant
    Filed: February 5, 2021
    Date of Patent: May 31, 2022
    Assignee: AU OPTRONICS CORPORATION
    Inventors: Che-Chia Chang, Ming-Hsien Lee, Chun-Fu Chung, Ming-Hung Chuang
  • Publication number: 20220114935
    Abstract: A display device includes a plurality of first pixels, a plurality of second pixels, a plurality of first multiplexers, a plurality of second multiplexers, a plurality of first traces, a plurality of second traces, and an integrated circuit. First multiplexers are used to control first pixels. Second multiplexers are used to control second pixels. First traces are coupled to each of first multiplexers. Second traces are coupled to each of second multiplexers. Integrated circuit includes at least two first polarity pins s and at least two second polarity pins. At least two first polarity pins s are adjacent. At least two second polarity pins are adjacent. At least two first polarity pins and at least two second polarity pins are arranged alternately. At least two first polarity pins s are coupled to first traces. At least two second polarity pins are coupled to second traces.
    Type: Application
    Filed: July 21, 2021
    Publication date: April 14, 2022
    Inventors: Che-Chia CHANG, Ming-Hung CHUANG