Patents by Inventor Chen-Shien Chen

Chen-Shien Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10700025
    Abstract: A method embodiment includes forming a sacrificial film layer over a top surface of a die, the die having a contact pad at the top surface. The die is attached to a carrier, and a molding compound is formed over the die and the sacrificial film layer. The molding compound extends along sidewalls of the die. The sacrificial film layer is exposed. The contact pad is exposed by removing at least a portion of the sacrificial film layer. A first polymer layer is formed over the die, and a redistribution layer (RDL) is formed over the die and electrically connects to the contact pad.
    Type: Grant
    Filed: June 8, 2016
    Date of Patent: June 30, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hua Yu, Yen-Chang Hu, Ching-Wen Hsiao, Mirng-Ji Lii, Chung-Shi Liu, Chien Ling Hwang, Chih-Wei Lin, Chen-Shien Chen
  • Patent number: 10692848
    Abstract: A method comprises depositing a protection layer over a first substrate, wherein the first substrate is part of a first semiconductor die, forming an under bump metallization structure over the protection layer, forming a connector over the under bump metallization structure, forming a first dummy plane along a first edge of a top surface of the first semiconductor die and forming a second dummy plane along a second edge of the top surface of the first semiconductor die, wherein the first dummy plane and the second dummy plane form an L-shaped region.
    Type: Grant
    Filed: February 8, 2016
    Date of Patent: June 23, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yao-Chun Chuang, Yu-Chen Hsu, Hao Chun Liu, Chita Chuang, Chen-Cheng Kuo, Chen-Shien Chen
  • Patent number: 10692828
    Abstract: A package structure is provided. The package structure includes a first under bump metallurgy (UBM) layer formed over a first substrate, a first protrusion structure formed over the first UBM layer, wherein the first protrusion structure extends upward away from the first UBM layer. The package structure includes a first electrical connector formed over the first protrusion structure. The first electrical connector is surrounded by the first protrusion structure, and the first protrusion structure has an outer sidewall surface, and the outer sidewall surface of the first protrusion structure is aligned with an outer surface of the first UBM layer.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: June 23, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Pei-Haw Tsao, Chen-Shien Chen, Li-Huan Chu
  • Publication number: 20200194326
    Abstract: A package includes a die, a plurality of conductive structures, an encapsulant, and a redistribution structure. The die has an active surface and a rear surface opposite to the active surface. The conductive structures surround the die. The conductive structures include elliptical columns. The encapsulant encapsulates the die and the conductive structures. The redistribution structure is over the active surface of the die and the encapsulant. The redistribution structure is electrically connected to the die and the conductive structures.
    Type: Application
    Filed: February 24, 2020
    Publication date: June 18, 2020
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Sheng-Huan Chiu, Chun-Jen Chen, Chen-Shien Chen, Kuo-Chio Liu, Kuo-Hui Chang, Chung-Yi Lin, Hsi-Kuei Cheng, Yi-Jen Lai
  • Patent number: 10651142
    Abstract: A micro-connection structure is provided. The micro-connection structure includes an under bump metallurgy (UBM) pad, a bump and an insulating ring. The UBM pad is electrically connected to at least one metallic contact of a substrate. The bump is disposed on the UBM pad and electrically connected with the UBM pad. The insulating ring surrounds the bump and the UBM pad. The bump is separate from the insulating ring with a distance and the bump is isolated by a gap between the insulating ring and the bump.
    Type: Grant
    Filed: May 6, 2019
    Date of Patent: May 12, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Wen-Hsiung Lu, Chen-Shien Chen, Chen-En Yen, Cheng-Jen Lin, Chin-Wei Kang, Kai-Jun Zhan
  • Patent number: 10643861
    Abstract: A method is provided. The method includes attaching a bridge layer to a first substrate. The method also includes forming a first connector, the first connector electrically connecting the bridge layer to the first substrate. The method also includes coupling a first die to the bridge layer and the first substrate, and coupling a second die to the bridge layer.
    Type: Grant
    Filed: May 1, 2017
    Date of Patent: May 5, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Wei Sen Chang, Yu-Feng Chen, Chen-Shien Chen, Mirng-Ji Lii
  • Publication number: 20200126939
    Abstract: A package includes a first and a second package component. The first package component includes a first metal trace and a second metal trace at the surface of the first package component. The second metal trace is parallel to the first metal trace. The second metal trace includes a narrow metal trace portion having a first width, and a wide metal trace portion having a second width greater than the first width connected to the narrow metal trace portion. The second package component is over the first package component. The second package component includes a metal bump overlapping a portion of the first metal trace, and a conductive connection bonding the metal bump to the first metal trace. The conductive connection contacts a top surface and sidewalls of the first metal trace. The metal bump is neighboring the narrow metal trace portion.
    Type: Application
    Filed: December 20, 2019
    Publication date: April 23, 2020
    Inventors: Sheng-Yu Wu, Tin-Hao Kuo, Chen-Shien Chen
  • Patent number: 10629580
    Abstract: A semiconductor package includes a package substrate. A redistribution structure is bonded to the package substrate. A bottommost surface of the redistribution structure is lower than a topmost surface of the package substrate. A conductive connector electrically couples the redistribution structure to the package substrate. The conductive connector physically contacts a sidewall of the redistribution structure. A first integrated circuit die is bonded to the redistribution structure through first bonding structures and is bonded to the package substrate through second bonding structures. The first bonding structures and the second bonding structures have different sizes.
    Type: Grant
    Filed: July 22, 2019
    Date of Patent: April 21, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Hua Chen, Chen-Shien Chen, Ching-Wen Hsiao
  • Publication number: 20200118978
    Abstract: A semiconductor device and a method of manufacture are provided. In particular, a semiconductor device using blocks, e.g., discrete connection blocks, having through vias and/or integrated passive devices formed therein are provided. Embodiments such as those disclosed herein may be utilized in PoP applications. In an embodiment, the semiconductor device includes a die and a connection block encased in a molding compound. Interconnection layers may be formed on surfaces of the die, the connection block and the molding compound. One or more dies and/or packages may be attached to the interconnection layers.
    Type: Application
    Filed: December 16, 2019
    Publication date: April 16, 2020
    Inventors: Ching-Wen Hsiao, Chen-Shien Chen, Wei Sen Chang, Shou-Cheng Hu
  • Publication number: 20200118966
    Abstract: Disclosed herein is a bump-on-trace interconnect with a wetted trace sidewall and a method for fabricating the same. A first substrate having conductive bump with solder applied is mounted to a second substrate with a trace disposed thereon by reflowing the solder on the bump so that the solder wets at least one sidewall of the trace, with the solder optionally wetting between at least half and all of the height of the trace sidewall. A plurality of traces and bumps may also be disposed on the first substrate and second substrate with a bump pitch of less than about 100 ?m, and volume of solder for application to the bump calculated based on at least one of a joint gap distance, desired solder joint width, predetermined solder joint separation, bump geometry, trace geometry, minimum trace sidewall wetting region height and trace separation distance.
    Type: Application
    Filed: December 11, 2019
    Publication date: April 16, 2020
    Inventors: Chen-Hua Yu, Chen-Shien Chen
  • Publication number: 20200118984
    Abstract: An embodiment package includes a first package. The first package includes a first integrated circuit die, an encapsulant around the first integrated circuit die, and redistribution layers over the encapsulant and the first integrated circuit die. The package also includes a second package bonded to the first package by a plurality of functional connectors. The functional connectors and the redistribution layers electrically connect a second integrated circuit die of the second package to the first integrated circuit die. The package also includes a plurality of dummy connectors disposed between the first package and the second package. One end of each of the plurality of dummy connectors facing the first package is physically separated from the first package.
    Type: Application
    Filed: December 11, 2019
    Publication date: April 16, 2020
    Inventors: Chen-Shien Chen, Hsiu-Jen Lin, Ming-Chih Yew, Ming-Da Cheng, Yi-Jen Lai, Yu-Tse Su, Sey-Ping Sun, Yang-Che Chen
  • Publication number: 20200105728
    Abstract: A package for a use in a package-on-package (PoP) device and a method of forming is provided. The package includes a substrate, a polymer layer formed on the substrate, a first via formed in the polymer layer, and a material disposed in the first via to form a first passive device. The material may be a high dielectric constant dielectric material in order to form a capacitor or a resistive material to form a resistor.
    Type: Application
    Filed: December 3, 2019
    Publication date: April 2, 2020
    Inventors: Ching-Wen Hsiao, Chen-Shien Chen
  • Publication number: 20200098712
    Abstract: A semiconductor device includes a conductive pad having a first width. The semiconductor device includes a passivation layer over the conductive pad, wherein the passivation layer directly contacts the conductive pad. The semiconductor device includes a protective layer over the passivation layer, wherein the protective layer directly contacts the conductive pad. The semiconductor device includes an under-bump metallization (UBM) layer directly contacting the conductive pad, wherein the UBM layer has a second width greater than the first width. The semiconductor device includes a conductive pillar on the UBM layer.
    Type: Application
    Filed: November 18, 2019
    Publication date: March 26, 2020
    Inventors: Chita CHUANG, Yao-Chun CHUANG, Tsung-Shu LIN, Chen-Cheng KUO, Chen-Shien CHEN
  • Publication number: 20200098714
    Abstract: The embodiments described provide elongated bonded structures near edges of packaged structures free of solder wetting on sides of copper posts substantially facing the center of the packaged structures. Solder wetting occurs on other sides of copper posts of these bonded structures. The elongated bonded structures are arranged in different arrangements and reduce the chance of shorting between neighboring bonded structures. In addition, the elongated bonded structures improve the reliability performance.
    Type: Application
    Filed: November 4, 2019
    Publication date: March 26, 2020
    Inventors: Ming-Hong Cha, Chen-Shien Chen, Chen-Cheng Kuo, Tsung-Hsien Chiang, Hao-Juin Liu, Yao-Chun Chuang, Chita Chuang
  • Publication number: 20200091122
    Abstract: A package on package structure includes a first package, a plurality of conductive bumps, a second package and an underfill. The conductive bumps are disposed on a second surface of the first package and electrically connected to the first package. The second package is disposed on the second surface of the first package through the conductive bumps, and includes a semiconductor device and an encapsulating material encapsulating the semiconductor device. A shortest distance from an upper surface of the encapsulating material to an upper surface of the semiconductor device is greater than or substantially equal to twice a thickness of the semiconductor device. The underfill is filled between the first package and the second package.
    Type: Application
    Filed: November 20, 2019
    Publication date: March 19, 2020
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Dong-Han Shen, Chen-Shien Chen, Kuo-Chio Liu, Hsi-Kuei Cheng, Yi-Jen Lai
  • Publication number: 20200083152
    Abstract: A device includes a redistribution line, and a polymer region molded over the redistribution line. The polymer region includes a first flat top surface. A conductive region is disposed in the polymer region and electrically coupled to the redistribution line. The conductive region includes a second flat top surface not higher than the first flat top surface.
    Type: Application
    Filed: November 15, 2019
    Publication date: March 12, 2020
    Inventors: Ching-Wen Hsiao, Ming-Da Cheng, Chih-Wei Lin, Chen-Shien Chen, Chih-Hua Chen, Chen-Cheng Kuo
  • Publication number: 20200075708
    Abstract: A structure and a formation method of a semiconductor device are provided. The method includes forming an adhesive layer over a semiconductor substrate and forming a magnetic element over the adhesive layer. The method also includes forming an isolation element extending across the magnetic element. The isolation element partially covers the top surface of the magnetic element and partially covers sidewall surfaces of the magnetic element. The method further includes partially removing the adhesive layer such that an edge of the adhesive layer is laterally disposed between an edge of the magnetic element and an edge of the isolation element. In addition, the method includes forming a conductive line over the isolation element.
    Type: Application
    Filed: January 29, 2019
    Publication date: March 5, 2020
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chi-Cheng CHEN, Wei-Li HUANG, Chien-Chih KUO, Hon-Lin HUANG, Chin-Yu KU, Chen-Shien CHEN
  • Publication number: 20200075448
    Abstract: A structure and a formation method of a semiconductor device are provided. The method includes forming a passivation layer over a semiconductor substrate. The method also includes forming a magnetic element over the passivation layer. The method further includes forming an isolation layer over the magnetic element and the passivation layer. The isolation layer includes a polymer material. In addition, the method includes forming a conductive line over the isolation layer, and the conductive line extends across the magnetic element.
    Type: Application
    Filed: June 5, 2019
    Publication date: March 5, 2020
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chi-Cheng CHEN, Wei-Li HUANG, Chun-Yi WU, Kuang-Yi WU, Hon-Lin HUANG, Chih-Hung SU, Chin-Yu KU, Chen-Shien CHEN
  • Patent number: 10573573
    Abstract: A package includes a die, a plurality of first conductive structures, a plurality of second conductive structures, an encapsulant, and a redistribution structure. The die has an active surface and a rear surface opposite to the active surface. The first conductive structures and the second conductive structures surround the die. The first conductive structures include cylindrical columns and the second conductive structures include elliptical columns or conical frustums. The encapsulant encapsulates the die, the first conductive structures, and the second conductive structures. The redistribution structure is over the active surface of the die and the encapsulant. The redistribution structure is electrically connected to the die, the first conductive structures, and the second conductive structures.
    Type: Grant
    Filed: March 20, 2018
    Date of Patent: February 25, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Sheng-Huan Chiu, Chun-Jen Chen, Chen-Shien Chen, Kuo-Chio Liu, Kuo-Hui Chang, Chung-Yi Lin, Hsi-Kuei Cheng, Yi-Jen Lai
  • Publication number: 20200058601
    Abstract: A system and method for preventing cracks in a passivation layer is provided. In an embodiment a contact pad has a first diameter and an opening through the passivation layer has a second diameter, wherein the first diameter is greater than the second diameter by a first distance of about 10 ?m. In another embodiment, an underbump metallization is formed through the opening, and the underbump metallization has a third diameter that is greater than the first diameter by a second distance of about 5 ?m. In yet another embodiment, a sum of the first distance and the second distance is greater than about 15 ?m. In another embodiment the underbump metallization has a first dimension that is less than a dimension of the contact pad and a second dimension that is greater than a dimension of the contact pad.
    Type: Application
    Filed: October 23, 2019
    Publication date: February 20, 2020
    Inventors: Yu-Feng Chen, Yen-Liang Lin, Tin-Hao Kuo, Sheng-Yu Wu, Chen-Shien Chen