Patents by Inventor Chen-Shien Chen

Chen-Shien Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11302537
    Abstract: A method for forming a chip package structure is provided. The method includes providing a wiring substrate including a substrate, a pad, and a polymer layer. The polymer layer is over the substrate and the pad, and the polymer layer has a first opening exposing the pad. The method includes forming a conductive adhesive layer over the polymer layer and the pad. The conductive adhesive layer is in direct contact with and conformally covers the polymer layer and the pad. The method includes forming a nickel layer over the conductive adhesive layer. The nickel layer is thicker than the conductive adhesive layer, and the nickel layer and the conductive adhesive layer are made of different materials. The method includes bonding a chip to the wiring substrate through a conductive bump. The conductive bump is between the nickel layer and the chip.
    Type: Grant
    Filed: April 1, 2020
    Date of Patent: April 12, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Kuo-Ching Hsu, Yu-Huan Chen, Chen-Shien Chen
  • Patent number: 11257797
    Abstract: A package on package structure includes a first package, a plurality of conductive bumps, a second package and an underfill. The conductive bumps are disposed on a second surface of the first package and electrically connected to the first package. The second package is disposed on the second surface of the first package through the conductive bumps, and includes a semiconductor device and an encapsulating material encapsulating the semiconductor device. A shortest distance from an upper surface of the encapsulating material to an upper surface of the semiconductor device is greater than or substantially equal to twice a thickness of the semiconductor device. The underfill is filled between the first package and the second package.
    Type: Grant
    Filed: November 20, 2019
    Date of Patent: February 22, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Dong-Han Shen, Chen-Shien Chen, Kuo-Chio Liu, Hsi-Kuei Cheng, Yi-Jen Lai
  • Patent number: 11244940
    Abstract: A method comprises depositing a protection layer over a first substrate, wherein the first substrate is part of a first semiconductor die, forming an under bump metallization structure over the protection layer, forming a connector over the under bump metallization structure, forming a first dummy plane along a first edge of a top surface of the first semiconductor die and forming a second dummy plane along a second edge of the top surface of the first semiconductor die, wherein the first dummy plane and the second dummy plane form an L-shaped region.
    Type: Grant
    Filed: September 12, 2019
    Date of Patent: February 8, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yao-Chun Chuang, Yu-Chen Hsu, Hao Chun Liu, Chita Chuang, Chen-Cheng Kuo, Chen-Shien Chen
  • Patent number: 11244919
    Abstract: A package structure is provided comprising a die, a redistribution layer, at least one integrated passive device (IPD), a plurality of solder balls and a molding compound. The die comprises a substrate and a plurality of conductive pads. The redistribution layer is disposed on the die, wherein the redistribution layer comprises first connection structures and second connection structures. The IPD is disposed on the redistribution layer, wherein the IPD is connected to the first connection structures of the redistribution layer. The plurality of solder balls is disposed on the redistribution layer, wherein the solder balls are disposed and connected to the second connection structures of the redistribution layer. The molding compound is disposed on the redistribution layer, and partially encapsulating the IPD and the plurality of solder balls, wherein top portions of the solder balls and a top surface of the IPD are exposed from the molding compound.
    Type: Grant
    Filed: March 28, 2019
    Date of Patent: February 8, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ching-Wen Hsiao, Chen-Shien Chen, Kuo-Ching Hsu, Mirng-Ji Lii
  • Patent number: 11233116
    Abstract: A semiconductor device structure is provided. The semiconductor device structure includes a semiconductor substrate and a magnetic element over the semiconductor substrate. The magnetic element has a first edge. The semiconductor device structure also includes an adhesive element between the magnetic element and the semiconductor substrate, and the adhesive element has a second edge. The semiconductor device structure further includes an isolation element extending across the magnetic element. The isolation element partially covers a top surface of the magnetic element and partially covers sidewall surfaces of the magnetic element. The isolation element has a third edge, and the second edge is closer to the third edge than the first edge. In addition, the semiconductor device structure includes a conductive line over the isolation element.
    Type: Grant
    Filed: July 20, 2020
    Date of Patent: January 25, 2022
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chi-Cheng Chen, Wei-Li Huang, Chien-Chih Kuo, Hon-Lin Huang, Chin-Yu Ku, Chen-Shien Chen
  • Patent number: 11217562
    Abstract: A semiconductor device and a method of manufacture are provided. In particular, a semiconductor device using blocks, e.g., discrete connection blocks, having through vias and/or integrated passive devices formed therein are provided. Embodiments such as those disclosed herein may be utilized in PoP applications. In an embodiment, the semiconductor device includes a die and a connection block encased in a molding compound. Interconnection layers may be formed on surfaces of the die, the connection block and the molding compound. One or more dies and/or packages may be attached to the interconnection layers.
    Type: Grant
    Filed: December 16, 2019
    Date of Patent: January 4, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ching-Wen Hsiao, Chen-Shien Chen, Wei Sen Chang, Shou-Cheng Hu
  • Publication number: 20210376054
    Abstract: A semiconductor device structure is provided. The semiconductor device structure includes a semiconductor substrate and a magnetic element over the semiconductor substrate. The semiconductor device structure also includes an isolation layer covering the magnetic element and a portion of the semiconductor substrate. The isolation layer contains a polymer material. The semiconductor device structure further includes a conductive line over the isolation layer and extending exceeding edges of the magnetic element.
    Type: Application
    Filed: August 16, 2021
    Publication date: December 2, 2021
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chi-Cheng CHEN, Wei-Li HUANG, Chun-Yi WU, Kuang-Yi WU, Hon-Lin HUANG, Chih-Hung SU, Chin-Yu KU, Chen-Shien CHEN
  • Patent number: 11152319
    Abstract: A micro-connection structure is provided. The micro-connection structure includes an under bump metallurgy (UBM) pad, a bump and an insulating ring. The UBM pad is electrically connected to at least one metallic contact of a substrate. The bump is disposed on the UBM pad and electrically connected with the UBM pad. The insulating ring surrounds the bump and the UBM pad. The bump is separate from the insulating ring with a distance and the bump is isolated by a gap between the insulating ring and the bump.
    Type: Grant
    Filed: May 10, 2020
    Date of Patent: October 19, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Wen-Hsiung Lu, Chen-Shien Chen, Chen-En Yen, Cheng-Jen Lin, Chin-Wei Kang, Kai-Jun Zhan
  • Publication number: 20210313195
    Abstract: A method for forming a chip package structure is provided. The method includes providing a wiring substrate including a substrate, a pad, and a polymer layer. The polymer layer is over the substrate and the pad, and the polymer layer has a first opening exposing the pad. The method includes forming a conductive adhesive layer over the polymer layer and the pad. The conductive adhesive layer is in direct contact with and conformally covers the polymer layer and the pad. The method includes forming a nickel layer over the conductive adhesive layer. The nickel layer is thicker than the conductive adhesive layer, and the nickel layer and the conductive adhesive layer are made of different materials. The method includes bonding a chip to the wiring substrate through a conductive bump. The conductive bump is between the nickel layer and the chip.
    Type: Application
    Filed: April 1, 2020
    Publication date: October 7, 2021
    Inventors: Kuo-Ching HSU, Yu-Huan CHEN, Chen-Shien CHEN
  • Publication number: 20210313287
    Abstract: An embodiment bump on trace (BOT) structure includes a contact element supported by an integrated circuit, an under bump metallurgy (UBM) feature electrically coupled to the contact element, a metal ladder bump mounted on the under bump metallurgy feature, the metal ladder bump having a first tapering profile, and a substrate trace mounted on a substrate, the substrate trace having a second tapering profile and coupled to the metal ladder bump through direct metal-to-metal bonding. An embodiment chip-to-chip structure may be fabricated in a similar fashion.
    Type: Application
    Filed: June 21, 2021
    Publication date: October 7, 2021
    Inventors: Yu-Wei Lin, Sheng-Yu Wu, Yu-Jen Tseng, Tin-Hao Kuo, Chen-Shien Chen
  • Patent number: 11133274
    Abstract: A method embodiment includes forming a sacrificial film layer over a top surface of a die, the die having a contact pad at the top surface. The die is attached to a carrier, and a molding compound is formed over the die and the sacrificial film layer. The molding compound extends along sidewalls of the die. The sacrificial film layer is exposed. The contact pad is exposed by removing at least a portion of the sacrificial film layer. A first polymer layer is formed over the die, and a redistribution layer (RDL) is formed over the die and electrically connects to the contact pad.
    Type: Grant
    Filed: June 29, 2020
    Date of Patent: September 28, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hua Yu, Yen-Chang Hu, Ching-Wen Hsiao, Mirng-Ji Lii, Chung-Shi Liu, Chien Ling Hwang, Chih-Wei Lin, Chen-Shien Chen
  • Patent number: 11127704
    Abstract: A semiconductor device includes a substrate and at least one bump structure disposed over the substrate. The at least one bump structure includes a pillar formed of a metal having a lower solderability than copper or a copper alloy to a solder alloy disposed over the substrate. A solder alloy is formed directly over and in contact with an upper surface of the metal having the lower solderability than copper or a copper alloy. The pillar has a height of greater than 10 ?m.
    Type: Grant
    Filed: October 24, 2018
    Date of Patent: September 21, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Pei-Haw Tsao, Chen-Shien Chen, Cheng-Hung Tsai, Kuo-Chin Chang, Li-Huan Chu
  • Patent number: 11127703
    Abstract: Semiconductor devices are provided. The semiconductor device includes a first dielectric layer, a bump, an etching stop layer and a spacer. The first dielectric layer is disposed over and exposes a conductive structure. The bump is partially disposed in the first dielectric layer to electrically connect the conductive structure. The etching stop layer is disposed over the first dielectric layer aside the bump. The spacer surrounds the bump and disposed between the etching stop layer and the bump.
    Type: Grant
    Filed: April 2, 2019
    Date of Patent: September 21, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chin-Yu Ku, Cheng-Lung Yang, Chen-Shien Chen, Hon-Lin Huang, Chao-Yi Wang, Ching-Hui Chen, Chien-Hung Kuo
  • Publication number: 20210287966
    Abstract: A semiconductor package includes a substrate. The semiconductor package further includes a plurality of metal pillars on a top surface of the substrate. The semiconductor package further includes a semiconductor component on the substrate, wherein the semiconductor component includes one or more dies, and the semiconductor component has a top surface. The semiconductor package further includes a mold compound encapsulating the plurality of metal pillars and the semiconductor component, wherein the mold compound has a top surface above the top surface of the semiconductor component. The semiconductor package further includes an interposer coupled to the plurality of metal pillars.
    Type: Application
    Filed: June 1, 2021
    Publication date: September 16, 2021
    Inventors: Hui-Min HUANG, Chen-Shien CHEN, Chung-Shi LIU, Chih-Wei LIN, Ming-Da CHENG, Shou-Cheng HU
  • Publication number: 20210288012
    Abstract: According to an exemplary embodiment, a substrate having a first area and a second area is provided. The substrate includes a plurality of pads. Each of the pads has a pad size. The pad size in the first area is larger than the pad size in the second area.
    Type: Application
    Filed: May 28, 2021
    Publication date: September 16, 2021
    Inventors: Wei-Hung Lin, Hsiu-Jen Lin, Ming-Da Cheng, Yu-Min Liang, Chen-Shien Chen, Chung-Shi Liu
  • Patent number: 11094776
    Abstract: A structure and a formation method of a semiconductor device are provided. The method includes forming a passivation layer over a semiconductor substrate. The method also includes forming a magnetic element over the passivation layer. The method further includes forming an isolation layer over the magnetic element and the passivation layer. The isolation layer includes a polymer material. In addition, the method includes forming a conductive line over the isolation layer, and the conductive line extends across the magnetic element.
    Type: Grant
    Filed: June 5, 2019
    Date of Patent: August 17, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chi-Cheng Chen, Wei-Li Huang, Chun-Yi Wu, Kuang-Yi Wu, Hon-Lin Huang, Chih-Hung Su, Chin-Yu Ku, Chen-Shien Chen
  • Patent number: 11088102
    Abstract: The embodiments described provide elongated bonded structures near edges of packaged structures free of solder wetting on sides of copper posts substantially facing the center of the packaged structures. Solder wetting occurs on other sides of copper posts of these bonded structures. The elongated bonded structures are arranged in different arrangements and reduce the chance of shorting between neighboring bonded structures. In addition, the elongated bonded structures improve the reliability performance.
    Type: Grant
    Filed: November 4, 2019
    Date of Patent: August 10, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ming-Hong Cha, Chen-Shien Chen, Chen-Cheng Kuo, Tsung-Hsien Chiang, Hao-Juin Liu, Yao-Chun Chuang, Chita Chuang
  • Patent number: 11081459
    Abstract: A method of forming a semiconductor device is provided. A first substrate is provided with a conductive feature therein, a metal bump over the conductive feature and a passivation stack aside the metal bump. A first insulating layer is formed over the metal bump and the passivation stack. First and second patterning processes are performed to form first and second opening patterns in the first insulating layer. The metal bump is exposed by the second patterning process. A second substrate is provided with a second insulating layer thereon. The second substrate is bonded to the first substrate with the second insulating layer and the first insulating layer facing each other, so that the second insulating layer fills in the first and second opening patterns of the first insulating layer. The first insulating layer and a portion of the passivation stack are removed.
    Type: Grant
    Filed: October 7, 2019
    Date of Patent: August 3, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chin-Yu Ku, Hon-Lin Huang, Chao-Yi Wang, Chen-Shien Chen, Chien-Hung Kuo
  • Publication number: 20210217672
    Abstract: Embodiments of mechanisms for testing a die package with multiple packaged dies on a package substrate use an interconnect substrate to provide electrical connections between dies and the package substrate and to provide probing structures (or pads). Testing structures, including daisy-chain structures, with metal lines to connect bonding structures connected to signals, power source, and/or grounding structures are connected to probing structures on the interconnect substrate. The testing structures enable determining the quality of bonding and/or functionalities of packaged dies bonded. After electrical testing is completed, the metal lines connecting the probing structures and the bonding structures are severed to allow proper function of devices in the die package. The mechanisms for forming test structures with probing pads on interconnect substrate and severing connecting metal lines after testing could reduce manufacturing cost.
    Type: Application
    Filed: March 29, 2021
    Publication date: July 15, 2021
    Inventors: Chih-Hua Chen, Chen-Shien Chen, Ching-Wen Hsiao
  • Patent number: 11043462
    Abstract: An embodiment bump on trace (BOT) structure includes a contact element supported by an integrated circuit, an under bump metallurgy (UBM) feature electrically coupled to the contact element, a metal ladder bump mounted on the under bump metallurgy feature, the metal ladder bump having a first tapering profile, and a substrate trace mounted on a substrate, the substrate trace having a second tapering profile and coupled to the metal ladder bump through direct metal-to-metal bonding. An embodiment chip-to-chip structure may be fabricated in a similar fashion.
    Type: Grant
    Filed: June 10, 2019
    Date of Patent: June 22, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Yu-Wei Lin, Sheng-Yu Wu, Yu-Jen Tseng, Tin-Hao Kuo, Chen-Shien Chen