Patents by Inventor Cheng-Chieh Yang

Cheng-Chieh Yang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240134807
    Abstract: The invention relates to a logic control device of a serial peripheral interface, a master-slave system and a master-slave switchover method therefor. The logic control device is connected between N masters and M slaves, and define master-slave connection relationships between each of the masters and each of the slaves. Each of the master-slave connection relationship is that each of the masters and each of the slaves transmit information one-to-one at the same time, and includes connecting the logic control device between the masters and the slaves to form the master-slave system as well as the master-slave switchover method therefor.
    Type: Application
    Filed: October 19, 2022
    Publication date: April 25, 2024
    Inventors: CHUN CHIEH WANG, CHENG YU WANG, JIN KAI YANG
  • Publication number: 20240078695
    Abstract: In various examples, surface profile estimation and bump detection may be performed based on a three-dimensional (3D) point cloud. The 3D point cloud may be filtered in view of a portion of an environment including drivable free-space, and within a threshold height to factor out other objects or obstacles other than a driving surface and protuberances thereon. The 3D point cloud may be analyzed—e.g., using a sliding window of bounding shapes along a longitudinal or other heading direction—to determine one-dimensional (1D) signal profiles corresponding to heights along the driving surface. The profile itself may be used by a vehicle—e.g., an autonomous or semi-autonomous vehicle—to help in navigating the environment, and/or the profile may be used to detect bumps, humps, and/or other protuberances along the driving surface, in addition to a location, orientation, and geometry thereof.
    Type: Application
    Filed: November 8, 2023
    Publication date: March 7, 2024
    Inventors: Minwoo Park, Yue Wu, Michael Grabner, Cheng-Chieh Yang
  • Publication number: 20240059295
    Abstract: In various examples, systems and methods are disclosed that detect hazards on a roadway by identifying discontinuities between pixels on a depth map. For example, two synchronized stereo cameras mounted on an ego-machine may generate images that may be used extract depth or disparity information. Because a hazard's height may cause an occlusion of the driving surface behind the hazard from a perspective of a camera(s), a discontinuity in disparity values may indicate the presence of a hazard. For example, the system may analyze pairs of pixels on the depth map and, when the system determines that a disparity between a pair of pixels satisfies a disparity threshold, the system may identify the pixel nearest the ego-machine as a hazard pixel.
    Type: Application
    Filed: October 31, 2023
    Publication date: February 22, 2024
    Inventors: Minwoo Park, Yue Wu, Cheng-Chieh Yang
  • Publication number: 20240062657
    Abstract: In various examples, a sequential deep neural network (DNN) may be trained using ground truth data generated by correlating (e.g., by cross-sensor fusion) sensor data with image data representative of a sequences of images. In deployment, the sequential DNN may leverage the sensor correlation to compute various predictions using image data alone. The predictions may include velocities, in world space, of objects in fields of view of an ego-vehicle, current and future locations of the objects in image space, and/or a time-to-collision (TTC) between the objects and the ego-vehicle. These predictions may be used as part of a perception system for understanding and reacting to a current physical environment of the ego-vehicle.
    Type: Application
    Filed: October 20, 2023
    Publication date: February 22, 2024
    Inventors: Yue Wu, Pekka Janis, Xin Tong, Cheng-Chieh Yang, Minwoo Park, David Nister
  • Patent number: 11900629
    Abstract: In various examples, surface profile estimation and bump detection may be performed based on a three-dimensional (3D) point cloud. The 3D point cloud may be filtered in view of a portion of an environment including drivable free-space, and within a threshold height to factor out other objects or obstacles other than a driving surface and protuberances thereon. The 3D point cloud may be analyzed—e.g., using a sliding window of bounding shapes along a longitudinal or other heading direction—to determine one-dimensional (1D) signal profiles corresponding to heights along the driving surface. The profile itself may be used by a vehicle—e.g., an autonomous or semi-autonomous vehicle—to help in navigating the environment, and/or the profile may be used to detect bumps, humps, and/or other protuberances along the driving surface, in addition to a location, orientation, and geometry thereof.
    Type: Grant
    Filed: February 27, 2023
    Date of Patent: February 13, 2024
    Assignee: NVIDIA Corporation
    Inventors: Minwoo Park, Yue Wu, Michael Grabner, Cheng-Chieh Yang
  • Patent number: 11854401
    Abstract: In various examples, a sequential deep neural network (DNN) may be trained using ground truth data generated by correlating (e.g., by cross-sensor fusion) sensor data with image data representative of a sequences of images. In deployment, the sequential DNN may leverage the sensor correlation to compute various predictions using image data alone. The predictions may include velocities, in world space, of objects in fields of view of an ego-vehicle, current and future locations of the objects in image space, and/or a time-to-collision (TTC) between the objects and the ego-vehicle. These predictions may be used as part of a perception system for understanding and reacting to a current physical environment of the ego-vehicle.
    Type: Grant
    Filed: December 16, 2022
    Date of Patent: December 26, 2023
    Assignee: NVIDIA Corporation
    Inventors: Yue Wu, Pekka Janis, Xin Tong, Cheng-Chieh Yang, Minwoo Park, David Nister
  • Patent number: 11840238
    Abstract: In various examples, systems and methods are disclosed that detect hazards on a roadway by identifying discontinuities between pixels on a depth map. For example, two synchronized stereo cameras mounted on an ego-machine may generate images that may be used extract depth or disparity information. Because a hazard's height may cause an occlusion of the driving surface behind the hazard from a perspective of a camera(s), a discontinuity in disparity values may indicate the presence of a hazard. For example, the system may analyze pairs of pixels on the depth map and, when the system determines that a disparity between a pair of pixels satisfies a disparity threshold, the system may identify the pixel nearest the ego-machine as a hazard pixel.
    Type: Grant
    Filed: November 29, 2021
    Date of Patent: December 12, 2023
    Assignee: NVIDIA Corporation
    Inventors: Minwoo Park, Yue Wu, Cheng-Chieh Yang
  • Publication number: 20230351638
    Abstract: In various examples, system and methods for stereo disparity based hazard detection for autonomous machine applications are presented. Example embodiments may assist an ego-machine in detecting hazards within its path of travel. The systems and methods may use disparity between a stereo pair of images to generate a baseline path disparity model and further identify hazards from detected disparities that deviate from that path disparity model. A disparity map for the image pair is constructed in which each pixel represents a disparity for a corresponding element of the image captured. Blockwise division may be optionally used to subdivide the disparity map into a plurality of smaller disparity maps, each corresponding to a block of pixels of the disparity map. A V-space disparity map, where a first axis corresponds to disparity values and the second axis corresponds to pixel rows, may be used to simplify estimation of the path disparity model.
    Type: Application
    Filed: April 29, 2022
    Publication date: November 2, 2023
    Inventors: Yue WU, Liwen Lin, Cheng-Chieh Yang, Gang Pan
  • Publication number: 20230253706
    Abstract: An antenna structure includes a feeding radiation element, a first radiation element, a second radiation element, a third radiation element, a fourth radiation element, a fifth radiation element, and a switch circuit. The feeding radiation element has a feeding point. The second radiation element is coupled through the first radiation element to the feeding radiation element. The third radiation element is coupled to the second radiation element. The fourth radiation element is coupled to the second radiation element. The fourth radiation element and the third radiation element extend in different directions. The fifth radiation element has a tuning point, and is coupled to the feeding radiation element. The feeding radiation element is disposed between the first radiation element and the fifth radiation element. The switch circuit selectively couples the tuning point to a ground voltage.
    Type: Application
    Filed: March 21, 2022
    Publication date: August 10, 2023
    Inventors: Cheng-Chieh YANG, Chih-Ming CHEN, Po-Yu CHEN
  • Publication number: 20230230273
    Abstract: In various examples, surface profile estimation and bump detection may be performed based on a three-dimensional (3D) point cloud. The 3D point cloud may be filtered in view of a portion of an environment including drivable free-space, and within a threshold height to factor out other objects or obstacles other than a driving surface and protuberances thereon. The 3D point cloud may be analyzed—e.g., using a sliding window of bounding shapes along a longitudinal or other heading direction—to determine one-dimensional (1D) signal profiles corresponding to heights along the driving surface. The profile itself may be used by a vehicle—e.g., an autonomous or semi-autonomous vehicle—to help in navigating the environment, and/or the profile may be used to detect bumps, humps, and/or other protuberances along the driving surface, in addition to a location, orientation, and geometry thereof.
    Type: Application
    Filed: February 27, 2023
    Publication date: July 20, 2023
    Inventors: Minwoo Park, Yue Wu, Michael Grabner, Cheng-Chieh Yang
  • Publication number: 20230178893
    Abstract: A communication device includes an RF (Radio Frequency) module, an antenna structure, a first switch element, a second switch element, a plurality of first impedance elements, and a plurality of second impedance elements. The antenna structure is coupled to the RF module. The antenna structure includes a first radiation element and a second radiation element. The first switch element is coupled to the first radiation element. The first switch element is switchable between the first impedance elements. The second switch element is coupled to the second radiation element. The second switch element is switchable between the second impedance elements.
    Type: Application
    Filed: January 24, 2022
    Publication date: June 8, 2023
    Inventors: Cheng-Chieh YANG, Yi Shien CHEN
  • Patent number: 11657532
    Abstract: In various examples, surface profile estimation and bump detection may be performed based on a three-dimensional (3D) point cloud. The 3D point cloud may be filtered in view of a portion of an environment including drivable free-space, and within a threshold height to factor out other objects or obstacles other than a driving surface and protuberances thereon. The 3D point cloud may be analyzed—e.g., using a sliding window of bounding shapes along a longitudinal or other heading direction—to determine one-dimensional (1D) signal profiles corresponding to heights along the driving surface. The profile itself may be used by a vehicle—e.g., an autonomous or semi-autonomous vehicle—to help in navigating the environment, and/or the profile may be used to detect bumps, humps, and/or other protuberances along the driving surface, in addition to a location, orientation, and geometry thereof.
    Type: Grant
    Filed: November 24, 2020
    Date of Patent: May 23, 2023
    Assignee: NVIDIA Corporation
    Inventors: Minwoo Park, Yue Wu, Michael Grabner, Cheng-Chieh Yang
  • Publication number: 20230122119
    Abstract: In various examples, a sequential deep neural network (DNN) may be trained using ground truth data generated by correlating (e.g., by cross-sensor fusion) sensor data with image data representative of a sequences of images. In deployment, the sequential DNN may leverage the sensor correlation to compute various predictions using image data alone. The predictions may include velocities, in world space, of objects in fields of view of an ego-vehicle, current and future locations of the objects in image space, and/or a time-to-collision (TTC) between the objects and the ego-vehicle. These predictions may be used as part of a perception system for understanding and reacting to a current physical environment of the ego-vehicle.
    Type: Application
    Filed: December 16, 2022
    Publication date: April 20, 2023
    Inventors: Yue Wu, Pekka Janis, Xin Tong, Cheng-Chieh Yang, Minwoo Park, David Nister
  • Patent number: 11579629
    Abstract: In various examples, a sequential deep neural network (DNN) may be trained using ground truth data generated by correlating (e.g., by cross-sensor fusion) sensor data with image data representative of a sequences of images. In deployment, the sequential DNN may leverage the sensor correlation to compute various predictions using image data alone. The predictions may include velocities, in world space, of objects in fields of view of an ego-vehicle, current and future locations of the objects in image space, and/or a time-to-collision (TTC) between the objects and the ego-vehicle. These predictions may be used as part of a perception system for understanding and reacting to a current physical environment of the ego-vehicle.
    Type: Grant
    Filed: July 17, 2019
    Date of Patent: February 14, 2023
    Assignee: NVIDIA Corporation
    Inventors: Yue Wu, Pekka Janis, Xin Tong, Cheng-Chieh Yang, Minwoo Park, David Nister
  • Publication number: 20220340149
    Abstract: In various examples, an end-to-end perception evaluation system for autonomous and semi-autonomous machine applications may be implemented to evaluate how the accuracy or precision of outputs of machine learning models—such as deep neural networks (DNNs)—impact downstream performance of the machine when relied upon. For example, decisions computed by the system using ground truth output types may be compared to decisions computed by the system using the perception outputs. As a result, discrepancies in downstream decision making of the system between the ground truth information and the perception information may be evaluated to either aid in updating or retraining of the machine learning model or aid in generating more accurate or precise ground truth information.
    Type: Application
    Filed: April 21, 2022
    Publication date: October 27, 2022
    Inventors: David Nister, Cheng-Chieh Yang, Yue Wu
  • Publication number: 20220301186
    Abstract: In various examples, an ego-machine may analyze sensor data to identify and track features in the sensor data using. Geometry of the tracked features may be used to analyze motion flow to determine whether the motion flow violates one or more geometrical constraints. As such, tracked features may be identified as dynamic features when the motion flow corresponding to the tracked features violates the one or more static constraints for static features. Tracked features that are determined to be dynamic features may be clustered together according to their location and feature track. Once features have been clustered together, the system may calculate a detection bounding shape for the clustered features. The bounding shape information may then be used by the ego-machine for path planning, control decisions, obstacle avoidance, and/or other operations.
    Type: Application
    Filed: February 23, 2022
    Publication date: September 22, 2022
    Inventors: David Nister, Soohwan Kim, Yue Wu, Minwoo Park, Cheng-Chieh Yang
  • Publication number: 20220250624
    Abstract: In various examples, systems and methods are disclosed that detect hazards on a roadway by identifying discontinuities between pixels on a depth map. For example, two synchronized stereo cameras mounted on an ego-machine may generate images that may be used extract depth or disparity information. Because a hazard's height may cause an occlusion of the driving surface behind the hazard from a perspective of a camera(s), a discontinuity in disparity values may indicate the presence of a hazard. For example, the system may analyze pairs of pixels on the depth map and, when the system determines that a disparity between a pair of pixels satisfies a disparity threshold, the system may identify the pixel nearest the ego-machine as a hazard pixel.
    Type: Application
    Filed: November 29, 2021
    Publication date: August 11, 2022
    Inventors: Minwoo Park, Yue Wu, Cheng-Chieh Yang
  • Patent number: 11387576
    Abstract: An antenna system includes a first antenna element, a second antenna element, and a circuit region. The first antenna element includes a first nonconductive support element and a first main radiation element. The first main radiation element is disposed on the first nonconductive support element. The second antenna element includes a second nonconductive support element and a second main radiation element. The second main radiation element is disposed on the second nonconductive support element. The second main radiation element is at least partially perpendicular to the first main radiation element. The circuit region is positioned between the first antenna element and the second antenna element.
    Type: Grant
    Filed: February 4, 2021
    Date of Patent: July 12, 2022
    Assignee: WISTRON CORP.
    Inventors: Chien Hsun Chen, Cheng-Chieh Yang
  • Publication number: 20220209429
    Abstract: An antenna system includes a first antenna element, a second antenna element, and a circuit region. The first antenna element includes a first nonconductive support element and a first main radiation element. The first main radiation element is disposed on the first nonconductive support element. The second antenna element includes a second nonconductive support element and a second main radiation element. The second main radiation element is disposed on the second nonconductive support element. The second main radiation element is at least partially perpendicular to the first main radiation element. The circuit region is positioned between the first antenna element and the second antenna element.
    Type: Application
    Filed: February 4, 2021
    Publication date: June 30, 2022
    Inventors: Chien Hsun CHEN, Cheng-Chieh YANG
  • Publication number: 20220166142
    Abstract: An antenna structure includes a feeding radiation element, a first radiation element, a second radiation element, a nonconductive support element, and an accessory element. The feeding radiation element has a feeding point. The first radiation element includes a branch portion and a widening portion. The feeding radiation element is coupled through the first radiation element to a ground voltage. The second radiation element is coupled to the feeding radiation element and the first radiation element. The nonconductive support element carries the feeding radiation element, the first radiation element, and the second radiation element. The accessory element includes a nonconductive housing and an internal metal element. The branch portion and widening portion of the first radiation element are disposed on the nonconductive housing of the accessory element.
    Type: Application
    Filed: December 29, 2020
    Publication date: May 26, 2022
    Inventors: Cheng-Chieh YANG, Chih-Ming CHEN