Patents by Inventor Cheng-Chung Lee

Cheng-Chung Lee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20050062134
    Abstract: A compound semiconductor material for forming an active layer of a thin film transistor device is disclosed, which has a group II-VI compound doped with a dopant ranging from 0.1 to 30 mol %, wherein the dopant is selected from a group consisting of alkaline-earth metals, group IIIA elements, group IVA elements, group VA elements, group VIA elements, and transitional metals. The method for forming an active layer of a thin film transistor device by using the compound semiconductor material of the present invention is disclosed therewith.
    Type: Application
    Filed: December 9, 2003
    Publication date: March 24, 2005
    Applicant: Industrial Technology Research Institute
    Inventors: Jia-Chong Ho, Jen-Hao Lee, Cheng-Chung Lee, Yu-Wu Wang, Chun-Tao Lee, Pang Lin
  • Patent number: 6863585
    Abstract: A method of bonding spacers to an anode plate of a field emission display. An anode plate having separate phosphor regions is provided, wherein a black matrix material is provided to separate the phosphor regions from one another. A magnetic layer is formed on the black matrix material. A thin metal film is formed on the anode plate and the magnetic layer. Spacers are disposed on the metal film above the black matrix material. An electromagnetic induction procedure is performed to heat the magnetic layer and thus serves as a heating source to produce heat, wherein the heat goes through the metal film to heat the spacers. A direct current (D.C.) electric field procedure is performed to bond the spacers to the metal film above the black matrix material.
    Type: Grant
    Filed: May 22, 2003
    Date of Patent: March 8, 2005
    Assignee: Industrial Technology Research Institute
    Inventors: Shaue-An Yang, Cheng-Chung Lee, Ming-Chun Hsiao, Jung-Tang Huang
  • Publication number: 20050046335
    Abstract: An anode plate for a field emission display device (FED) is disclosed, which has a substrate; an anode conductive layer formed on the substrate; at least one interspacing conductive band having a plurality of internal gaps for connecting the anode conductive layer and external cable lines, wherein the interspacing conductive band covers a part of the anode conductive layer; and a fluorescent layer located on the anode conductive layer, to serve as a source of luminescence for a field emission display device. The field emission display device includes the anode plate aforesaid as is also disclosed.
    Type: Application
    Filed: January 21, 2004
    Publication date: March 3, 2005
    Applicant: Industrial Technology Research Institute
    Inventors: Ying-Hsien Chen, Cheng-Chung Lee, Wen-Kuei Huang, Wei-Yi Lin, Jia-Chong Ho, Yu-Yang Chang, Ming-Chun Hsiao, Yun-Chiao Hsiao
  • Publication number: 20050011758
    Abstract: A magnetic control oscillation-scanning sputter includes a sputtering target, a base and an elongated magnet. The sputtering target has a surface with a target located thereon corresponding to the base. The target being sputtered is deposited on the base. The elongated magnet is located on the rear side of the sputtering target and moved reciprocately to control the deposition of the target. The elongated magnet has two ends each which is coupled with a magnetic erasing means for reducing excessive magnetic field intensity at the two ends to avoid affecting the sputter quality.
    Type: Application
    Filed: August 13, 2004
    Publication date: January 20, 2005
    Applicant: HannStar Display Corp.
    Inventors: Tun-Ho Teng, Cheng-Chung Lee
  • Publication number: 20040261942
    Abstract: A method of forming spacers on a display substrate is described. First, a mould having a plurality of trenches is provided. Spacer are dropped onto the mould. When the mould is vibrated, the spacers fall into the trenches. Then, a display substrate having viscous substance on a surface thereof is pressed onto the spacers in the trenches of the mould, so that the spacers are bonded to the display substrate due to the viscous substance. Finally, the spacers bonded with the display substrate are removed from the trenches of the mould.
    Type: Application
    Filed: August 22, 2003
    Publication date: December 30, 2004
    Inventors: Ching-Hsiang Chan, Liang-Ying Huang, Cheng-Chung Lee, Jia-Chong Ho, Ming-Chun Hsiao
  • Publication number: 20040224081
    Abstract: The invention relates to a method for carbon nanotube emitter surface treatment, which is used to increase the number of carbon nanotube exposed on the triode structure device. For advancing the current density and magnitude of CNT emitter, the invention uses a method of casting surface treatment on the CNT emitter including the steps of coating an adhesive material on the surface of device; heating the adhesive material for adhibitting the surface; and lifting the adhesive material off.
    Type: Application
    Filed: September 4, 2003
    Publication date: November 11, 2004
    Applicant: Industrial Technology Research Institute
    Inventors: Jyh-Rong Sheu, Chun-Tao Lee, Cheng-Chung Lee, Jia-Chong Ho, Yu-Yang Chang
  • Patent number: 6811457
    Abstract: A method for fabricating the cathode plate of a carbon nano tube field emission display uses a photosensitive paste and etchable dielectric material to fabricate the cathode plate. The method combines photolithography process and etching process to fabricate a cathode electrode layer, a dielectric layer, a gate layer, and a carbon nano tube emission layer. Packing this cathode plate structure with a conventional anode plate together can form a carbon nano tube field emission array. The distribution of the electric field is uniform and the alignment at post-process is made easy.
    Type: Grant
    Filed: February 9, 2002
    Date of Patent: November 2, 2004
    Assignee: Industrial Technology Research Institute
    Inventors: Hua-Chi Cheng, Cheng-Chung Lee, Jane-Hway Liao, Yu-Yang Chang, Jyh-Rong Sheu, Jia-Chong Ho
  • Publication number: 20040209388
    Abstract: The invention provides an organic thin film transistor array substrate, comprising: a substrate, having a liquid crystal display area and an organic thin film transistor area; a pixel electrode, formed on the substrate in the LCD area; a first alignment film, formed on the pixel electrode; a second alignment film, formed on the substrate in the OTFT area; an organic semiconductor layer, formed on the second alignment film, wherein the organic semiconductor layer is aligned along the direction of the second alignment film; and a gate, a source and a drain, formed in the OTFT area, wherein the source and the drain are in contact with the organic semiconductor layer and a channel is formed between the source and the drain.
    Type: Application
    Filed: August 8, 2003
    Publication date: October 21, 2004
    Applicant: Industrial Technology Reasearch Institute
    Inventors: Horng-Long Cheng, Wei-Yang Chou, Yih-Jun Wong, Yu-Wu Wang, Cheng-Chung Lee
  • Patent number: 6793785
    Abstract: A magnetic control oscillation-scanning sputter includes a sputtering target, a base and an elongated magnet. The sputtering target has a surface with a target located thereon corresponding to the base. The target being sputtered is deposited on the base. The elongated magnet is located on the rear side of the sputtering target and moved reciprocately to control the deposition of the target. The elongated magnet has two ends each which is coupled with a magnetic erasing means for reducing excessive magnetic field intensity at the two ends to avoid affecting the sputter quality.
    Type: Grant
    Filed: October 23, 2002
    Date of Patent: September 21, 2004
    Assignee: HannStar Display Corp.
    Inventors: Tun-Ho Teng, Cheng-Chung Lee
  • Publication number: 20040130261
    Abstract: This invention is an improved processing method and structure for the packaging technique of a large size field emission display. A large size field emission display includes an indium-tin oxides (ITO) conducting glass substrate, which is covered by the first screen mask and the second screen mask defined to a BM layer area, a multi-phosphor layer area and a hollow area. Each area was coated to form an Al layer, which was formed an AlOx layer through a phosphor sintering process. The spacer was fixed in a hollow area of an AlOx layer through an anodic assembling technique. The next plate was fixed on the spacer to accomplish an aligner process.
    Type: Application
    Filed: December 19, 2003
    Publication date: July 8, 2004
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Ming-Chun Hsiao, Cheng-Chung Lee, Yu-Yang Chang
  • Patent number: 6759305
    Abstract: A method for increasing the capacity of an integrated circuit device. The method includes the steps of defining a catalyst area on a substrate, forming a nanotube, nanowire, or nanobelt on the catalyst area, forming a first dielectric layer on the nanotube, nanowire, or nanobelt and the substrate, and forming an electrode layer on the first dielectric layer. According to above method, the capacity is substantially increased without extending the original bottom area of the capacitor electrode by using the surface area of the nanotube, nanowire, or nanobelt as the area of the capacitor electrode.
    Type: Grant
    Filed: April 16, 2002
    Date of Patent: July 6, 2004
    Assignee: Industrial Technology Research Institute
    Inventors: Chun-Tao Lee, Cheng-Chung Lee, Bing-Yue Tsui
  • Publication number: 20040121695
    Abstract: A method of relocating spacers using inductive attraction. A chuck employs the inductive attraction to lift field emission display (FED) spacers, wherein the spacers are provided with susceptibility to the employed attraction. The spacers are lifted by the chuck and relocated to a desired position. The inductive process uses a non-contact force, including electrostatic and magnetic forces.
    Type: Application
    Filed: June 25, 2003
    Publication date: June 24, 2004
    Applicant: Industrial Technology Research Institute
    Inventors: Wei-Yi Lin, Ming-Chun Hsiao, Cheng-Chung Lee, Kang-Hung Liu, Ching-Hsiang Chan, Yang-Yi Fan, Hsin-Chun Chiang
  • Patent number: 6750604
    Abstract: A field emission display panel device that incorporates carbon nanotube emitter layers for emitting electrons wherein the carbon nanotube layers has a smaller width than the conductive paste layers it is deposited on is disclosed. The width of the carbon nanotube layer should be less than ¾ of the width of the conductive paste layer, or in a range between about ¼ and ¾ of the width of the conductive paste layer, i.e. such as a silver paste layer. The present invention novel structure prevents the overflow of the carbon nanotubes, after a curing process for the nanotubes is conducted, onto the sidewall of the conductive paste layer, and thus significantly improves the electron density projected toward the flourescent powder coating layer to produce an image with reduced electron scattering. As a result, image clarity, definition and contrast can be improved in the FED device.
    Type: Grant
    Filed: May 23, 2001
    Date of Patent: June 15, 2004
    Assignee: Industrial Technology Research Institute
    Inventors: Cheng-Chung Lee, Jane-Hway Liao, Hua-Chi Cheng, Wen-Chun Wang
  • Publication number: 20040104668
    Abstract: A triode structure of a field emission display and fabrication method thereof. A plurality of cathode layers arranged in a matrix is formed overlying a dielectric layer. A plurality of emitting layers arranged in a matrix is formed overlying the cathode layers, respectively. A plurality of lengthwise-extending gate lines is formed on the dielectric layer, in which each of the gate layers is disposed between two adjacent columns of the cathode layers.
    Type: Application
    Filed: May 13, 2003
    Publication date: June 3, 2004
    Applicant: Industrial Technology Research Institute
    Inventors: Chun-Tao Lee, Cheng-Chung Lee, Jyh-Rong Sheu, Yu-Yang Chang, Jia-Chong Ho, Yu-Wu Wang
  • Patent number: 6741039
    Abstract: An improved FED driving method, which uses a voltage control different from the prior FED, to turn an electron beam on/off and increase the resolution. The improved FED driving method is characterized in increasing a positive voltage applied to the FED's anode, grounding the FED's emitter and applying a negative voltage to the FED's gate. When driving the FED, the anode can pull electron beam out of the cathode with high accelerate voltage and the applied negative voltage on the gate can turn the electron beam on/off. As such, this allows a higher resolution because the electron beam is not influenced by the gate's lateral attraction and high lighting efficiency with high anode accelerate voltage.
    Type: Grant
    Filed: May 16, 2002
    Date of Patent: May 25, 2004
    Assignee: Industrial Technology Research Institute
    Inventors: Chun-Tao Lee, Cheng-Chung Lee, Jyh-Rong Sheu, Yu-Yang Chang
  • Publication number: 20040051468
    Abstract: A nanotube field emission display. The nanotube field emission display includes a nanotube field emission cell, an active device, and a capacitor. The nanotube field emission cell includes a cathode, a gate, and an anode, wherein the cathode has nanotubes for field emission where the gate is used. The active device includes a first electrode, a second electrode, and a control electrode, wherein the second electrode is coupled to the gate of the nanotube field emission cell.
    Type: Application
    Filed: April 29, 2003
    Publication date: March 18, 2004
    Inventors: Yu-Wu Wang, Chun-Tao Lee, Cheng-Chung Lee
  • Patent number: 6705910
    Abstract: A manufacturing method for an electron-emitting source of triode structure, including forming a cathode layer on a substrate, forming a dielectric layer on the cathode layer, and positioning an opening in the dielectric layer to expose the cathode layer, wherein the opening has a surrounding region, forming a gate layer on the dielectric layer, except on the surrounding region, forming a hydrophilic layer in the opening, forming a hydrophobic layer on the gate layer and the surrounding region, wherein the hydrophobic layer contacts the ends of the hydrophilic layer, dispersing a carbon nanotube solution on the hydrophilic layer using ink jet printing, executing a thermal process step, and removing the hydrophobic layer. According to this method, carbon nanotubes are deposited over a large area in the gate hole.
    Type: Grant
    Filed: February 7, 2002
    Date of Patent: March 16, 2004
    Assignee: Industrial Technology Research Institute
    Inventors: Jyh-Rong Sheu, Jia-Chong Ho, Yu-Yang Chang, Hua-Chi Cheng, Cheng-Chung Lee
  • Publication number: 20040041146
    Abstract: An organic integrated device for thin film transistor and light emitting diode. The organic integrated device of the present invention includes a top-gate organic thin film transistor (top-gate OTFT) and an organic light emitting diode (OLED), both formed on the same substrate. In the organic integrated device, some layers can be commonly used by both OTFT and OLED, and some layers can be made of the same material and formed in the same course, which simplifies the entire process.
    Type: Application
    Filed: January 13, 2003
    Publication date: March 4, 2004
    Inventors: Horng-Long Cheng, Yu-Wu Wang, Ching-Hsun Chao, Cheng-Chung Lee, Chai-Yuan Sheu
  • Publication number: 20040029482
    Abstract: A method of bonding spacers to an anode plate of a field emission display. An anode plate having separate phosphor regions is provided, wherein a black matrix material is provided to separate the phosphor regions from one another. A magnetic layer is formed on the black matrix material. A thin metal film is formed on the anode plate and the magnetic layer. Spacers are disposed on the metal film above the black matrix material. An electromagnetic induction procedure is performed to heat the magnetic layer and thus serves as a heating source to produce heat, wherein the heat goes through the metal film to heat the spacers. A direct current (D.C.) electric field procedure is performed to bond the spacers to the metal film above the black matrix material.
    Type: Application
    Filed: May 22, 2003
    Publication date: February 12, 2004
    Applicant: Industrial Technology Research Institute
    Inventors: Shaue-An Yang, Cheng-Chung Lee, Ming-Chun Hsiao, Jung-Tang Huang
  • Publication number: 20030230482
    Abstract: A magnetic control oscillation-scanning sputter includes a sputtering target, a base and an elongated magnet. The sputtering target has a surface with a target located thereon corresponding to the base. The target being sputtered is deposited on the base. The elongated magnet is located on the rear side of the sputtering target and moved reciprocately to control the deposition of the target. The elongated magnet has two ends each which is coupled with a magnetic erasing means for reducing excessive magnetic field intensity at the two ends to avoid affecting the sputter quality.
    Type: Application
    Filed: October 23, 2002
    Publication date: December 18, 2003
    Applicant: HannStar Display Corp.
    Inventors: Tun-Ho Teng, Cheng-Chung Lee