Patents by Inventor Cheng-Hsiang Hsieh

Cheng-Hsiang Hsieh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210270879
    Abstract: Systems, methods, and circuits for determining a duty cycle of a periodic input signal are provided. A delay element is configured to delay the periodic input signal based on a digital control word. A digital circuit is configured to generate a first digital control word used to delay the periodic input signal a first amount of time corresponding to a period of the periodic input signal, generate a second digital control word used to delay the periodic input signal a second amount of time corresponding to a portion of the periodic input signal having a logic-level high value, and generate a third digital control word used to delay the periodic input signal a third amount of time corresponding to a portion of the periodic input signal having a logic-level low value. A controller is configured to determine the duty cycle based on the first, second, and third digital control words.
    Type: Application
    Filed: December 17, 2020
    Publication date: September 2, 2021
    Inventors: Tsung-Hsien Tsai, Ruey-Bin Sheen, Chih-Hsien Chang, Cheng-Hsiang Hsieh
  • Publication number: 20210273674
    Abstract: Circuits and methods for performing a clock and data recovery are disclosed. In one example, a circuit is disclosed. The circuit includes an FSM. The FSM includes: a first accumulator, a second accumulator, and a third accumulator. The first accumulator is configured to receive an input phase code representing a phase timing difference between a data signal and a clock signal at each FSM cycle, to accumulate input phase codes for different FSM cycles, and to generate a first order phase code at each FSM cycle. The second accumulator is coupled to the first accumulator and configured to accumulate the input phase codes and first order phase codes for different FSM cycles, and to generate a second order phase code at each FSM cycle. The third accumulator is coupled to the second accumulator and configured to accumulate the input phase codes and second order phase codes for different FSM cycles, and to generate a third order phase code at each FSM cycle.
    Type: Application
    Filed: May 14, 2021
    Publication date: September 2, 2021
    Inventors: Po-Hsiang LAN, Cheng-Hsiang HSIEH
  • Publication number: 20210263022
    Abstract: A fluidic cartridge and methods of operation are described. The fluidic cartridge includes a substrate having a plurality of contact pads designed to electrically couple with an analyzer, a semiconductor chip having a sensor array, and a reference electrode. The fluidic cartridge includes a first fluidic channel having an inlet and coupled to a second fluidic channel, the second fluidic channel being aligned such that the sensor array and the reference electrode are disposed within the second fluidic channel. A first plug is disposed at the first inlet. The first plug includes a compliant material configured to be punctured by a capillary without leaking fluid through the first plug.
    Type: Application
    Filed: May 7, 2021
    Publication date: August 26, 2021
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Jui-Cheng HUANG, Chin-Hua WEN, Tung-Tsun CHEN, Cheng-Hsiang HSIEH, Yu-Jie HUANG, Ching-Hui LIN
  • Publication number: 20210226584
    Abstract: Oscillators and methods for realignment of an oscillator are provided. An oscillator includes an inductor having first and second terminals and a capacitor electrically coupled in parallel to the inductor at the first and second terminals. A first transistor of a first conductivity type is electrically coupled to the first terminal and a voltage source. The first transistor includes a gate configured to receive a first realignment signal. When the first realignment signal is in a realignment state, the first transistor is turned on and a voltage of the first terminal is increased from a low level to a high level in order to align a phase of a waveform of the oscillator.
    Type: Application
    Filed: December 14, 2020
    Publication date: July 22, 2021
    Inventors: Tsung-Hsien Tsai, Ruey-Bin Sheen, Chih-Hsien Chang, Cheng-Hsiang Hsieh
  • Publication number: 20210218605
    Abstract: An optimized pulse shaping clock data recovery system is provided that includes a slicer configured to receive a signal and provide an initial set of tentative decisions to a decision feedforward equalizer, where the decision feedforward equalizer provides a fully equalized output signal. The slicer may be incorporated as part of decision feedback equalizer to provide better quality tentative decisions. The clock data recovery system also receives the first output signal that is partially equalized in such a way as to optimally shape it for a clock to sample it at an ideal location by providing an adjustment signal to the analog to digital controller.
    Type: Application
    Filed: January 25, 2021
    Publication date: July 15, 2021
    Inventors: Chaitanya Palusa, Rob Abbott, Rolando Ramirez, Wei-Li Chen, Dirk Pfaff, Cheng-Hsiang Hsieh, Fan-ming Kuo
  • Patent number: 11025294
    Abstract: Circuits and methods for performing a clock and data recovery are disclosed. In one example, a circuit is disclosed. The circuit includes an FSM. The FSM includes: a first accumulator, a second accumulator, and a third accumulator. The first accumulator is configured to receive an input phase code representing a phase timing difference between a data signal and a clock signal at each FSM cycle, to accumulate input phase codes for different FSM cycles, and to generate a first order phase code at each FSM cycle. The second accumulator is coupled to the first accumulator and configured to accumulate the input phase codes and first order phase codes for different FSM cycles, and to generate a second order phase code at each FSM cycle. The third accumulator is coupled to the second accumulator and configured to accumulate the input phase codes and second order phase codes for different FSM cycles, and to generate a third order phase code at each FSM cycle.
    Type: Grant
    Filed: January 14, 2020
    Date of Patent: June 1, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Po-Hsiang Lan, Cheng-Hsiang Hsieh
  • Publication number: 20210160107
    Abstract: A multi-tap Differential Feedforward Equalizer (DFFE) configuration with both precursor and postcursor taps is provided. The DFFE has reduced noise and/or crosstalk characteristics when compared to a Feedforward Equalizer (FFE) since DFFE uses decision outputs of slicers as inputs to a finite impulse response (FIR) unlike FFE which uses actual analog signal inputs. The digital outputs of the tentative decision slicers are multiplied with tap coefficients to reduce noise. Further, since digital outputs are used as the multiplier inputs, the multipliers effectively work as adders which are less complex to implement. The decisions at the outputs of the tentative decision slicers are tentative and are used in a FIR filter to equalize the signal; the equalized signal may be provided as input to the next stage slicers. The bit-error-rate (BER) of the final stage decisions are lower or better than the BER of the previous stage tentative decisions.
    Type: Application
    Filed: February 1, 2021
    Publication date: May 27, 2021
    Inventors: Chaitanya Palusa, Rob Abbott, Wei-Li Chen, Po-Hsiang Lan, Dirk Pfaff, Cheng-Hsiang Hsieh
  • Publication number: 20210148856
    Abstract: A biologically sensitive field effect transistor includes a substrate, a first control gate and a second control gate. The substrate has a first side and a second side opposite to the first side, a source region and a drain region. The first control gate is disposed on the first side of the substrate. The second control gate is disposed on the second side of the substrate. The second control gate includes a sensing film disposed on the second side of the substrate. A voltage biasing between the source region and the second control gate is smaller than a threshold voltage of the second control gate.
    Type: Application
    Filed: December 28, 2020
    Publication date: May 20, 2021
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yu-Jie HUANG, Jui-Cheng HUANG, Cheng-Hsiang HSIEH
  • Patent number: 11002704
    Abstract: Biosensor devices and methods of forming the same are provided. A cavity is formed in a substrate and is configured to receive one or more charged molecules. A transistor is formed in the substrate and includes a source region, a drain region, and a channel region that are spatially separated from the cavity in a lateral direction. A gate of the transistor is disposed below the cavity and extends between the cavity and the source, drain, and channel regions. A voltage potential of the gate is based on a number of the charged molecules in the cavity.
    Type: Grant
    Filed: August 31, 2016
    Date of Patent: May 11, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Tung-Tsun Chen, Chien-Kuo Yang, Jui-Cheng Huang, Mark Chen, Ta-Chuan Liao, Cheng-Hsiang Hsieh
  • Publication number: 20210109059
    Abstract: An on-chip heater in a concentric rings configuration having non-uniform spacing between heating elements provides improved radial temperature uniformity and low power consumption compared to circular or square heating elements. On-chip heaters are suitable for integration and use with on-chip sensors that require tight temperature control.
    Type: Application
    Filed: November 30, 2020
    Publication date: April 15, 2021
    Applicant: Taiwan Semiconductor manufacturing Co., Ltd.
    Inventors: Tung-Tsun CHEN, Jui-Cheng Huang, Kun-Lung Chen, Cheng-Hsiang Hsieh
  • Patent number: 10911272
    Abstract: A multi-tap Differential Feedforward Equalizer (DFFE) configuration with both precursor and postcursor taps is provided. The DFFE has reduced noise and/or crosstalk characteristics when compared to a Feedforward Equalizer (FFE) since DFFE uses decision outputs of slicers as inputs to a finite impulse response (FIR) unlike FFE which uses actual analog signal inputs. The digital outputs of the tentative decision slicers are multiplied with tap coefficients to reduce noise. Further, since digital outputs are used as the multiplier inputs, the multipliers effectively work as adders which are less complex to implement. The decisions at the outputs of the tentative decision slicers are tentative and are used in a FIR filter to equalize the signal; the equalized signal may be provided as input to the next stage slicers. The bit-error-rate (BER) of the final stage decisions are lower or better than the BER of the previous stage tentative decisions.
    Type: Grant
    Filed: January 13, 2020
    Date of Patent: February 2, 2021
    Inventors: Chaitanya Palusa, Rob Abbott, Wei-Li Chen, Po-Hsiang Lan, Dirk Pfaff, Cheng-Hsiang Hsieh
  • Publication number: 20210028789
    Abstract: Phase-locked loops (PLLs) are provided. A PLL includes a voltage-controlled oscillator (VCO), a frequency divider and a track-and-hold charge pump. The VCO is configured to provide an output clock corresponding to a pumping current. The frequency divider is configured to provide a feedback signal according to the output clock. The track-and-hold charge pump is configured to provide the pumping current according to a reference clock and the feedback signal. The track-and-hold charge pump includes a track-and-hold circuit, a pumping switch and a pulse width modulator (PWM). The track-and-hold circuit is coupled to the frequency divider and configured to sample the feedback signal according to the reference clock. The PWM is configured to provide a PWM signal to control the pumping switch according to the reference clock, so as to provide the pumping current corresponding to the sampled feedback signal.
    Type: Application
    Filed: October 13, 2020
    Publication date: January 28, 2021
    Inventors: Ting-Kuei KUAN, Cheng-Hsiang HSIEH, Chen-Ting KO, Ruey-Bin SHEEN, Chih-Hsien CHANG
  • Publication number: 20210028772
    Abstract: A controlling circuit for ring oscillator is provided. First and second transistors of a first conductive type are coupled in series and between a node and a first power source. Third and fourth transistors of a second conductive type are coupled in parallel and between the node and a second power source. The node is coupled to an input of a delay chain of the ring oscillator. The second and third transistors are coupled in series and gates of the second and third transistors are configured to receive an output signal of the delay chain. When the first transistor is turned off and the fourth transistor is turned on, the node is pulled to a first logic level from a second logic level in order to align a phase of a waveform of the ring oscillator.
    Type: Application
    Filed: October 8, 2020
    Publication date: January 28, 2021
    Inventors: Tsung-Hsien TSAI, Ruey-Bin SHEEN, Chih-Hsien CHANG, Cheng-Hsiang HSIEH
  • Patent number: 10904044
    Abstract: An optimized pulse shaping clock data recovery system is provided that includes a slicer configured to receive a signal and provide an initial set of tentative decisions to a decision feedforward equalizer, where the decision feedforward equalizer provides a fully equalized output signal. The slicer may be incorporated as part of decision feedback equalizer to provide better quality tentative decisions. The clock data recovery system also receives the first output signal that is partially equalized in such a way as to optimally shape it for a clock to sample it at an ideal location by providing an adjustment signal to the analog to digital controller.
    Type: Grant
    Filed: January 13, 2020
    Date of Patent: January 26, 2021
    Inventors: Chaitanya Palusa, Rob Abbott, Rolando Ramirez, Wei-Li Chen, Dirk Pfaff, Cheng-Hsiang Hsieh, Fan-ming Kuo
  • Patent number: 10876998
    Abstract: A biologically sensitive field effect transistor includes a substrate, a first control gate and a second control gate. The substrate has a first side and a second side opposite to the first side, a source region and a drain region. The first control gate is disposed on the first side of the substrate. The second control gate is disposed on the second side of the substrate. The second control gate includes a sensing film disposed on the second side of the substrate. A voltage biasing between the source region and the second control gate is smaller than a threshold voltage of the second control gate.
    Type: Grant
    Filed: December 20, 2018
    Date of Patent: December 29, 2020
    Inventors: Yu-Jie Huang, Jui-Cheng Huang, Cheng-Hsiang Hsieh
  • Patent number: 10868546
    Abstract: Systems, methods, and devices for fractional realignment are disclosed herein. A feedback divider generates a feedback dividing clock signal based on a controlling oscillator frequency. A delta-sigma modulator is coupled to the feedback divider and generates a dividing ratio to the feedback divider. An accumulating phase adjustor is coupled to the delta-signal modulator and (i) determines a difference between a frequency tuning word (FCW) and the dividing ratio and (ii) generates a coarse tuning word and a fine tuning word. A digital-to-time converter (DTC) is coupled to the accumulating phase adjustor and generates a first clock frequency based on a reference clock frequency, the coarse tuning word and the fine tuning word. A realignment pulse generator is coupled to the DTC and generates a realignment clock based on the first clock frequency having a period that is the same as a period of the controlling oscillator frequency.
    Type: Grant
    Filed: September 2, 2020
    Date of Patent: December 15, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Tsung-Hsien Tsai, Ruey-Bin Sheen, Chih-Hsien Chang, Cheng-Hsiang Hsieh
  • Patent number: 10868496
    Abstract: Oscillators and methods for realignment of an oscillator are provided. An oscillator includes an inductor having first and second terminals and a capacitor electrically coupled in parallel to the inductor at the first and second terminals. A first transistor of a first conductivity type is electrically coupled to the first terminal and a voltage source. The first transistor includes a gate configured to receive a first realignment signal. When the first realignment signal is in a realignment state, the first transistor is turned on and a voltage of the first terminal is increased from a low level to a high level in order to align a phase of a waveform of the oscillator.
    Type: Grant
    Filed: January 16, 2020
    Date of Patent: December 15, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Tsung-Hsien Tsai, Ruey-Bin Sheen, Chih-Hsien Chang, Cheng-Hsiang Hsieh
  • Patent number: 10852271
    Abstract: An on-chip heater in a concentric rings configuration having non-uniform spacing between heating elements provides improved radial temperature uniformity and low power consumption compared to circular or square heating elements. On-chip heaters are suitable for integration and use with on-chip sensors that require tight temperature control.
    Type: Grant
    Filed: December 14, 2016
    Date of Patent: December 1, 2020
    Inventors: Tung-Tsun Chen, Jui-Cheng Huang, Kun-Lung Chen, Cheng-Hsiang Hsieh
  • Patent number: 10855292
    Abstract: Phase-locked loops (PLLs) are provided. A PLL includes a voltage-controlled oscillator (VCO), a frequency divider, a track-and-hold charge pump, and a frequency tracking circuit. The VCO is configured to provide an output clock corresponding to a pumping current. The frequency divider is configured to divide the output clock to provide a feedback signal. The track-and-hold charge pump is configured to provide the pumping current according to a reference clock and the feedback signal. The frequency tracking circuit is configured to decrease frequency error between the feedback signal and the reference clock. The track-and-hold charge pump includes a pumping switch and a pulse width modulator (PWM). The PWM is configured to provide a PWM signal to control the pumping switch according to the reference clock, so as to provide the pumping current corresponding to the feedback signal.
    Type: Grant
    Filed: December 20, 2019
    Date of Patent: December 1, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD
    Inventors: Ting-Kuei Kuan, Cheng-Hsiang Hsieh, Chen-Ting Ko, Ruey-Bin Sheen, Chih-Hsien Chang
  • Publication number: 20200373290
    Abstract: Methods and semiconductor devices are described herein which eliminate the use of additional masks. A first interconnect layer is formed. A first resistive layer is formed on top of the first interconnect layer. A dielectric layer is formed on top of the first resistive layer. A second resistive layer is formed on top of the dielectric layer.
    Type: Application
    Filed: January 16, 2020
    Publication date: November 26, 2020
    Inventors: Chung-Hui Chen, Wan-Te Chen, Cheng-Hsiang Hsieh, Chia-Tien Wu