Patents by Inventor Cheng-Hsien Chou

Cheng-Hsien Chou has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200321251
    Abstract: In some embodiments, a method for bonding semiconductor wafers is provided. The method includes forming a first integrated circuit (IC) over a central region of a first semiconductor wafer. A first ring-shaped bonding support structure is formed over a ring-shaped peripheral region of the first semiconductor wafer, where the ring-shaped peripheral region of the first semiconductor wafer encircles the central region of the first semiconductor wafer. A second semiconductor wafer is bonded to the first semiconductor wafer, such that a second IC arranged on the second semiconductor wafer is electrically coupled to the first IC.
    Type: Application
    Filed: June 23, 2020
    Publication date: October 8, 2020
    Inventors: Sheng-Chan Li, Cheng-Hsien Chou, Cheng-Yuan Tsai, Chih-Hui Huang, Kuo-Ming Wu
  • Patent number: 10738433
    Abstract: An offshore wind turbine support structure monitoring system and operating method are disclosed, comprising an offshore wind turbine, at least one state detection module, a data acquisition module, a data storage module, a network transmission module and at least one client. Thus, the maintenance of offshore wind turbines can be monitored directly and instantly to estimate the maintenance period, adjust the optimal operation and maintenance strategy, and save the cost.
    Type: Grant
    Filed: December 22, 2018
    Date of Patent: August 11, 2020
    Assignee: SHIP AND OCEAN INDUSTRIES R&D CENTER
    Inventors: Yuan-Yi Chang, Cheng-Hsien Chung, Shean-Kwang Chou, Jia-Rong Lyu, Shao-Hua Yang, Yan-Wei Wu
  • Patent number: 10734285
    Abstract: In some embodiments, a method for bonding semiconductor wafers is provided. The method includes forming a first integrated circuit (IC) over a central region of a first semiconductor wafer. A first ring-shaped bonding support structure is formed over a ring-shaped peripheral region of the first semiconductor wafer, where the ring-shaped peripheral region of the first semiconductor wafer encircles the central region of the first semiconductor wafer. A second semiconductor wafer is bonded to the first semiconductor wafer, such that a second IC arranged on the second semiconductor wafer is electrically coupled to the first IC.
    Type: Grant
    Filed: November 2, 2018
    Date of Patent: August 4, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Sheng-Chan Li, Cheng-Hsien Chou, Cheng-Yuan Tsai, Chih-Hui Huang, Kuo-Ming Wu
  • Publication number: 20200243582
    Abstract: A semiconductor structure is disclosed. The semiconductor structure includes: a semiconductor substrate having a front surface and a back surface facing opposite to the front surface; a filling material extending from the front surface into the semiconductor substrate without penetrating through the semiconductor substrate, the filling material including an upper portion and a lower portion, the upper portion being in contact with the semiconductor substrate; and an epitaxial layer lined between the lower portion of the filling material and the semiconductor substrate. An associated manufacturing method is also disclosed.
    Type: Application
    Filed: April 15, 2020
    Publication date: July 30, 2020
    Inventors: SHENG-CHAN LI, I-NAN CHEN, TZU-HSIANG CHEN, YU-JEN WANG, YEN-TING CHIANG, CHENG-HSIEN CHOU, CHENG-YUAN TSAI
  • Publication number: 20200243583
    Abstract: A semiconductor structure includes: a semiconductor substrate arranged over a back end of line (BEOL) metallization stack, and including a scribe line opening; a conductive pad having an upper surface that is substantially flush with an upper surface of the semiconductor substrate, the conductive pad including an upper conductive region and a lower conductive region, the upper conductive region being confined to the scribe line opening substantially from the upper surface of the semiconductor substrate to a bottom of the scribe line opening, and the lower conductive region protruding downward from the upper conductive region, through the BEOL metallization stack; a passivation layer arranged over the semiconductor substrate; and an array of pixel sensors arranged in the semiconductor substrate adjacent to the conductive pad.
    Type: Application
    Filed: April 13, 2020
    Publication date: July 30, 2020
    Inventors: SHENG-CHAU CHEN, CHENG-HSIEN CHOU, MIN-FENG KAO
  • Publication number: 20200235159
    Abstract: In some embodiments, the present disclosure relates to an integrated chip structure. The integrated chip structure includes a first image sensor disposed within a first substrate and a second image sensor disposed within a second substrate. The second substrate has a first side facing the first substrate. The first side includes angled surfaces defining one or more recesses within the first side. A band-pass filter is arranged between the first substrate and the second substrate and is configured to reflect electromagnetic radiation that is within a first range of wavelengths.
    Type: Application
    Filed: April 1, 2020
    Publication date: July 23, 2020
    Inventors: Cheng Yu Huang, Chun-Hao Chuang, Chien-Hsien Tseng, Kazuaki Hashimoto, Keng-Yu Chou, Wei-Chieh Chiang, Wen-Hau Wu
  • Publication number: 20200227460
    Abstract: Various embodiments of the present application are directed to a narrow band filter with high transmission and an image sensor comprising the narrow band filter. In some embodiments, the filter comprises a first distributed Bragg reflector (DBR), a second DBR, a defect layer between the first and second DBRs, and a plurality of columnar structures. The columnar structures extend through the defect layer and have a refractive index different than a refractive index of the defect layer. The first and second DBRs define a low transmission band, and the defect layer defines a high transmission band dividing the low transmission band. The columnar structures shift the high transmission band towards lower or higher wavelengths depending upon a refractive index of the columnar structures and a fill factor of the columnar structures.
    Type: Application
    Filed: April 1, 2020
    Publication date: July 16, 2020
    Inventors: Cheng Yu Huang, Chun-Hao Chuang, Chien-Hsien Tseng, Kazuaki Hashimoto, Keng-Yu Chou, Wei-Chieh Chiang, Wen-Hau Wu
  • Publication number: 20200227461
    Abstract: Various embodiments of the present application are directed to a narrow band filter with high transmission and an image sensor comprising the narrow band filter. In some embodiments, the filter comprises a first distributed Bragg reflector (DBR), a second DBR, a defect layer between the first and second DBRs, and a plurality of columnar structures. The columnar structures extend through the defect layer and have a refractive index different than a refractive index of the defect layer. The first and second DBRs define a low transmission band, and the defect layer defines a high transmission band dividing the low transmission band. The columnar structures shift the high transmission band towards lower or higher wavelengths depending upon a refractive index of the columnar structures and a fill factor of the columnar structures.
    Type: Application
    Filed: April 1, 2020
    Publication date: July 16, 2020
    Inventors: Cheng Yu Huang, Chun-Hao Chuang, Chien-Hsien Tseng, Kazuaki Hashimoto, Keng-Yu Chou, Wei-Chieh Chiang, Wen-Hau Wu
  • Publication number: 20200208620
    Abstract: A connection structure for a motor of an air compressor contains: a base, a cylinder, a motor, and a transmission mechanism. The base includes a first positioning orifice and a second positioning orifice. The cylinder includes an air storage seat. A small-diameter gear is inserted through the first positioning orifice to fit on the motor, a bearing housing is accommodated in the first positioning orifice, and the motor includes a magnetic coil. The transmission mechanism actuates a piston to move in the cylinder reciprocately so as to compress air. The magnetic coil includes a first segment and a second segment, and the base includes two symmetrical elongated plates which respectively have two hooks. The base further includes two symmetrical arcuate retainers.
    Type: Application
    Filed: December 8, 2019
    Publication date: July 2, 2020
    Inventors: Wen-San CHOU, Cheng-Hsien Chou
  • Patent number: 10658409
    Abstract: A semiconductor structure is disclosed. The semiconductor structure includes: a semiconductor substrate having a front surface and a back surface facing opposite to the front surface; a filling material extending from the front surface into the semiconductor substrate without penetrating through the semiconductor substrate, the filling material including an upper portion and a lower portion, the upper portion being in contact with the semiconductor substrate; and an epitaxial layer lined between the lower portion of the filling material and the semiconductor substrate. An associated manufacturing method is also disclosed.
    Type: Grant
    Filed: February 23, 2018
    Date of Patent: May 19, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD. U.
    Inventors: Sheng-Chan Li, I-Nan Chen, Tzu-Hsiang Chen, Yu-Jen Wang, Yen-Ting Chiang, Cheng-Hsien Chou, Cheng-Yuan Tsai
  • Publication number: 20200152728
    Abstract: A semiconductor structure includes: a substrate; a first passivation layer over the substrate; a second passivation layer over the first passivation layer; and a magnetic core in the second passivation layer; wherein the magnetic core includes a first magnetic material layer and a second magnetic material layer over the first magnetic material layer, the first magnetic material layer and the second magnetic material layer are separated by a high resistance isolation layer, and the high resistance isolation layer has a resistivity greater than about 1.3 ohm-cm.
    Type: Application
    Filed: January 16, 2020
    Publication date: May 14, 2020
    Inventors: MING-CHE LEE, I-NAN CHEN, SHENG-CHAU CHEN, CHENG-HSIEN CHOU, CHENG-YUAN TSAI
  • Patent number: 10651225
    Abstract: In some embodiments, the present disclosure relates to a three-dimensional integrated chip. The three-dimensional integrated chip includes a first integrated chip (IC) die and a second IC die. The first IC die has a first image sensor element configured to generate electrical signals from electromagnetic radiation within a first range of wavelengths. The second IC die has a second image sensor element configured to generate electrical signals from electromagnetic radiation within a second range of wavelengths that is different than the first range of wavelengths. A first band-pass filter is arranged between the first IC die and the second IC die and is configured to reflect electromagnetic radiation that is within the first range of wavelengths.
    Type: Grant
    Filed: October 18, 2018
    Date of Patent: May 12, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Cheng Yu Huang, Chun-Hao Chuang, Chien-Hsien Tseng, Kazuaki Hashimoto, Keng-Yu Chou, Wei-Chieh Chiang, Wen-Hau Wu
  • Patent number: 10651220
    Abstract: Various embodiments of the present application are directed to a narrow band filter with high transmission and an image sensor comprising the narrow band filter. In some embodiments, the filter comprises a first distributed Bragg reflector (DBR), a second DBR, a defect layer between the first and second DBRs, and a plurality of columnar structures. The columnar structures extend through the defect layer and have a refractive index different than a refractive index of the defect layer. The first and second DBRs define a low transmission band, and the defect layer defines a high transmission band dividing the low transmission band. The columnar structures shift the high transmission band towards lower or higher wavelengths depending upon a refractive index of the columnar structures and a fill factor of the columnar structures.
    Type: Grant
    Filed: October 10, 2018
    Date of Patent: May 12, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Cheng Yu Huang, Chun-Hao Chuang, Chien-Hsien Tseng, Kazuaki Hashimoto, Keng-Yu Chou, Wei-Chieh Chiang, Wen-Hau Wu
  • Publication number: 20200141004
    Abstract: A gas shower head includes a plate, a plurality of central holes disposed in a central region of the plate, and a plurality of peripheral holes disposed in a peripheral region of the plate. The central holes are configured to form a first portion of a material film, and the peripheral holes are configured to form a second portion of the material film. A hole density in the peripheral region is greater than a hole density in the central region. The first portion of the material film includes a first thickness corresponding to the hole density in central region, and the second portion of the material film includes a second thickness corresponding to the hole density in peripheral region and greater than the first thickness.
    Type: Application
    Filed: January 6, 2020
    Publication date: May 7, 2020
    Inventors: CHIH-HUI HUANG, SHENG-CHAN LI, CHENG-HSIEN CHOU, CHENG-YUAN TSAI
  • Publication number: 20200144207
    Abstract: The present disclosure provides a semiconductor structure. The semiconductor structure comprises a semiconductive substrate and an interconnect structure over the semiconductive substrate. The semiconductor structure also comprises a bond pad in the semiconductive substrate and coupled to the metal layer. The bond pad comprises two conductive layers.
    Type: Application
    Filed: December 20, 2019
    Publication date: May 7, 2020
    Inventors: Sheng-Chau CHEN, Shih-Pei CHOU, Ming-Che LEE, Kuo-Ming WU, Cheng-Hsien CHOU, Cheng-Yuan TSAI, Yeur-Luen TU
  • Patent number: 10622401
    Abstract: A semiconductor structure includes: a semiconductor substrate arranged over a back end of line (BEOL) metallization stack, and including a scribe line opening; a conductive pad having an upper surface that is substantially flush with an upper surface of the semiconductor substrate, the conductive pad including an upper conductive region and a lower conductive region, the upper conductive region being confined to the scribe line opening substantially from the upper surface of the semiconductor substrate to a bottom of the scribe line opening, and the lower conductive region protruding downward from the upper conductive region, through the BEOL metallization stack; a passivation layer arranged over the semiconductor substrate; and an array of pixel sensors arranged in the semiconductor substrate adjacent to the conductive pad.
    Type: Grant
    Filed: May 6, 2019
    Date of Patent: April 14, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Sheng-Chau Chen, Cheng-Hsien Chou, Min-Feng Kao
  • Publication number: 20200105815
    Abstract: In some embodiments, the present disclosure relates to a three-dimensional integrated chip. The three-dimensional integrated chip includes a first integrated chip (IC) die and a second IC die. The first IC die has a first image sensor element configured to generate electrical signals from electromagnetic radiation within a first range of wavelengths. The second IC die has a second image sensor element configured to generate electrical signals from electromagnetic radiation within a second range of wavelengths that is different than the first range of wavelengths. A first band-pass filter is arranged between the first IC die and the second IC die and is configured to reflect electromagnetic radiation that is within the first range of wavelengths.
    Type: Application
    Filed: October 18, 2018
    Publication date: April 2, 2020
    Inventors: Cheng Yu Huang, Chun-Hao Chuang, Chien-Hsien Tseng, Kazuaki Hashimoto, Keng-Yu Chou, Wei-Chieh Chiang, Wen-Hau Wu
  • Publication number: 20200098813
    Abstract: In some embodiments, an image sensor is provided. The image sensor includes a photodetector disposed in a semiconductor substrate. A wave guide filter having a substantially planar upper surface is disposed over the photodetector. The wave guide filter includes a light filter disposed in a light filter grid structure. The light filter includes a first material that is translucent and has a first refractive index. The light filter grid structure includes a second material that is translucent and has a second refractive index less than the first refractive index.
    Type: Application
    Filed: May 20, 2019
    Publication date: March 26, 2020
    Inventors: Cheng Yu Huang, Chun-Hao Chuang, Chien-Hsien Tseng, Kazuaki Hashimoto, Keng-Yu Chou, Wei-Chieh Chiang, Wen-Chien Yu, Ting-Cheng Chang, Wen-Hau Wu, Chih-Kung Chang
  • Publication number: 20200098801
    Abstract: The present disclosure, in some embodiments, relates to an integrated chip. The integrated chip has an image sensor within a substrate. A first dielectric has an upper surface that extends over a first side of the substrate and over one or more trenches within the first side of the substrate. The one or more trenches laterally surround the image sensor. An internal reflection structure arranged over the upper surface of the first dielectric. The internal reflection structure is configured to reflect radiation exiting from the substrate back into the substrate.
    Type: Application
    Filed: November 26, 2019
    Publication date: March 26, 2020
    Inventors: Keng-Yu Chou, Chun-Hao Chuang, Chien-Hsien Tseng, Kazuaki Hashimoto, Wei-Chieh Chiang, Cheng Yu Huang, Wen-Hau Wu, Chih-Kung Chang, Jhy-Jyi Sze
  • Publication number: 20200091115
    Abstract: A structure and a method of forming are provided. The structure includes a first dielectric layer overlying a first substrate. A first connection pad is disposed in a top surface of the first dielectric layer and contacts a first redistribution line. A first dummy pad is disposed in the top surface of the first dielectric layer, the first dummy pad contacting the first redistribution line. A second dielectric layer overlies a second substrate. A second connection pad and a second dummy pad are disposed in the top surface of the second dielectric layer, the second connection pad bonded to the first connection pad, and the first dummy pad positioned in a manner that is offset from the second dummy pad so that the first dummy pad and the second dummy pad do not contact each other.
    Type: Application
    Filed: November 19, 2019
    Publication date: March 19, 2020
    Inventors: Kuo-Ming Wu, Yung-Lung Lin, Zhi-Yang Wang, Sheng-Chau Chen, Cheng-Hsien Chou