Patents by Inventor Cheng-Hsu Hsiao

Cheng-Hsu Hsiao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100267202
    Abstract: A stacked semiconductor structure and fabrication method thereof are provided. The method includes mounting and connecting electrically a semiconductor chip to a first substrate, mounting on the first substrate a plurality of supporting members corresponding in position to a periphery of the semiconductor chip, mounting a second substrate having a first surface partially covered with a tape and a second surface opposite to the first surface on the supporting members via the second surface, connecting electrically the first and second substrates by bonding wires, forming on the first substrate an encapsulant for encapsulating the semiconductor chip, the supporting members, the second substrate, the bonding wires, and the tape with an exposed top surface, and removing the tape to expose the first surface of the second substrate and allow an electronic component to be mounted thereon. The present invention prevents reflow-induced contamination, spares a special mold, and eliminates flash.
    Type: Application
    Filed: July 2, 2010
    Publication date: October 21, 2010
    Applicant: SILICONWARE PRECISION INDUSTRIES CO., LTD.
    Inventors: Chien-Ping Huang, Chih-Ming Huang, Han-Ping Pu, Yu-Po Wang, Cheng-Hsu Hsiao
  • Publication number: 20100255635
    Abstract: A multi-chip stack structure and a fabrication method thereof are proposed, including providing a leadframe having a die base and a plurality of leads and disposing a first and a second chips on the two surfaces of the die base respectively; disposing the leadframe on a heating block having a cavity in a wire bonding process with the second chip received in the cavity of the heating block; performing a first wire bonding process to electrically connect the first chip to the leads through a plurality of first bonding wires, and forming a bump on one side of the leads connected with the first bonding wires; disposing the leadframe in an upside down manner to the heating block via the bump with the first chip and the first bonding wires received in the cavity of the heating block; and performing a second wire bonding process to electrically connect the second chip to the leads through a plurality of second bonding wires.
    Type: Application
    Filed: June 18, 2010
    Publication date: October 7, 2010
    Applicant: SILICONWARE PRECISION INDUSTRIES CO., LTD.
    Inventors: Jung-Pin Huang, Chin-Huang Chang, Chien-Ping Huang, Chung-Lun Liu, Cheng-Hsu Hsiao
  • Publication number: 20100233855
    Abstract: A chip scale package structure and a method for fabricating the same are disclosed. The method includes forming metal pads on a predetermined part of a carrier; mounting chips on the carrier, each of the chips having a plurality of conductive bumps soldered to the metal pads; forming an encapsulant on the carrier to encapsulate the chips and the conductive bumps; removing the carrier to expose the metal pads and even the metal pads with a surface of the encapsulant; forming on the encapsulant a plurality of first conductive traces electrically connected to the metal pads; applying a solder mask on the first conductive traces, and forming a plurality of openings on the solder mask to expose a predetermined part of the first conductive traces; forming a plurality of conductive elements on the predetermined part; and cutting the encapsulant to form a plurality of chip scale package structures.
    Type: Application
    Filed: May 27, 2010
    Publication date: September 16, 2010
    Applicant: SILICONWARE PRECISION INDUSTRIES CO., LTD.
    Inventors: Han-Ping Pu, Chien-Ping Huang, Cheng-Hsu Hsiao
  • Patent number: 7772685
    Abstract: A stacked semiconductor structure and fabrication method thereof are provided. The method includes mounting and connecting electrically a semiconductor chip to a first substrate, mounting on the first substrate a plurality of supporting members corresponding in position to a periphery of the semiconductor chip, mounting a second substrate having a first surface partially covered with a tape and a second surface opposite to the first surface on the supporting members via the second surface, connecting electrically the first and second substrates by bonding wires, forming on the first substrate an encapsulant for encapsulating the semiconductor chip, the supporting members, the second substrate, the bonding wires, and the tape with an exposed top surface, and removing the tape to expose the first surface of the second substrate and allow an electronic component to be mounted thereon. The present invention prevents reflow-induced contamination, spares a special mold, and eliminates flash.
    Type: Grant
    Filed: November 1, 2006
    Date of Patent: August 10, 2010
    Assignee: Siliconware Precision Industries Co., Ltd.
    Inventors: Chien-Ping Huang, Chih-Ming Huang, Han-Ping Pu, Yu-Po Wang, Cheng-Hsu Hsiao
  • Patent number: 7768106
    Abstract: A multi-chip stack structure and a fabrication method thereof are proposed, including providing a leadframe having a die base and a plurality of leads and disposing a first and a second chips on the two surfaces of the die base respectively; disposing the leadframe on a heating block having a cavity in a wire bonding process with the second chip received in the cavity of the heating block; performing a first wire bonding process to electrically connect the first chip to the leads through a plurality of first bonding wires, and forming a bump on one side of the leads connected with the first bonding wires; disposing the leadframe in an upside down manner to the heating block via the bump with the first chip and the first bonding wires received in the cavity of the heating block; and performing a second wire bonding process to electrically connect the second chip to the leads through a plurality of second bonding wires.
    Type: Grant
    Filed: March 13, 2008
    Date of Patent: August 3, 2010
    Assignee: Siliconware Precision Industries Co., Ltd.
    Inventors: Jung-Ping Huang, Chin-Huang Chang, Chien-Ping Huang, Chung-Lun Liu, Cheng-Hsu Hsiao
  • Patent number: 7759170
    Abstract: A semiconductor package with a heat dissipating device and a fabrication method of the semiconductor package are provided. A chip is mounted on a substrate. The heat dissipating device is mounted on the chip, and includes an accommodating room, and a first opening and a second opening that communicate with the accommodating room. An encapsulant is formed between the heat dissipating device and the substrate to encapsulate the chip. A cutting process is performed to remove a non-electrical part of structure and expose the first and second openings from the encapsulant. A cooling fluid is received in the accommodating room to absorb and dissipate heat produced by the chip. The heat dissipating device covers the encapsulant and the chip to provide a maximum heat transfer area for the semiconductor package.
    Type: Grant
    Filed: February 23, 2010
    Date of Patent: July 20, 2010
    Assignee: Siliconware Precision Industries Co., Ltd.
    Inventors: Han-Ping Pu, Chien-Ping Huang, Cheng-Hsu Hsiao
  • Patent number: 7750467
    Abstract: A chip scale package structure and a method for fabricating the same are disclosed. The method includes forming metal pads on a predetermined part of a carrier; mounting chips on the carrier, each of the chips having a plurality of conductive bumps soldered to the metal pads; forming an encapsulant on the carrier to encapsulate the chips and the conductive bumps; removing the carrier to expose the metal pads and even the metal pads with a surface of the encapsulant; forming on the encapsulant a plurality of first conductive traces electrically connected to the metal pads; applying a solder mask on the first conductive traces, and forming a plurality of openings on the solder mask to expose a predetermined part of the first conductive traces; forming a plurality of conductive elements on the predetermined part; and cutting the encapsulant to form a plurality of chip scale package structures.
    Type: Grant
    Filed: August 8, 2007
    Date of Patent: July 6, 2010
    Assignee: Siliconware Precision Industries Co., Ltd.
    Inventors: Han-Ping Pu, Chien-Ping Huang, Cheng-Hsu Hsiao
  • Patent number: 7745262
    Abstract: A heat dissipating package structure includes a chip carrier; a semiconductor chip mounted and electrically connected to the chip carrier; a heat spreader having a first surface, an opposed second surface and a hollow structure, the second surface of the heat spreader being mounted on the chip, wherein the chip is larger in size than the hollow structure such that the chip is partly exposed to the hollow structure; an encapsulant formed between the heat spreader and the chip carrier, for encapsulating the chip, wherein the first surface and sides of the heat spreader are exposed from the encapsulant to dissipate heat produced from the chip; and a plurality of conductive elements disposed on the chip carrier, for electrically connecting the chip to an external device. The present invention also provides a method for fabricating the heat dissipating package structure.
    Type: Grant
    Filed: September 25, 2009
    Date of Patent: June 29, 2010
    Assignee: Siliconware Precision Industries Co., Ltd.
    Inventors: Chien-Ping Huang, Cheng-Hsu Hsiao
  • Publication number: 20100151631
    Abstract: A semiconductor package with a heat dissipating device and a fabrication method of the semiconductor package are provided. A chip is mounted on a substrate. The heat dissipating device is mounted on the chip, and includes an accommodating room, and a first opening and a second opening that communicate with the accommodating room. An encapsulant is formed between the heat dissipating device and the substrate to encapsulate the chip. A cutting process is performed to remove a non-electrical part of structure and expose the first and second openings from the encapsulant. A cooling fluid is received in the accommodating room to absorb and dissipate heat produced by the chip. The heat dissipating device covers the encapsulant and the chip to provide a maximum heat transfer area for the semiconductor package.
    Type: Application
    Filed: February 23, 2010
    Publication date: June 17, 2010
    Applicant: SILICONWARE PRECISION INDUSTRIES CO., LTD.
    Inventors: Han-Ping Pu, Chien-Ping Huang, Cheng-Hsu Hsiao
  • Patent number: 7732913
    Abstract: A semiconductor package substrate is provided, which includes a substrate body having a plurality of conductive through holes formed therein, wherein at least two adjacent conductive through holes are formed as a differential pair, each of which has a ball pad formed at an end thereof; and at least one electrically integrated layer formed in the substrate body, and having an opening corresponding to the two adjacent conductive through holes formed as the differential pair and the ball pads thereof. Thus, the spacing between the conductive through holes and the electrically integrated layer and the spacing between the ball pads can be enlarged by the opening, so as to balance the impedance match.
    Type: Grant
    Filed: February 2, 2007
    Date of Patent: June 8, 2010
    Assignee: Siliconware Precision Industries Co., Ltd.
    Inventors: Tsung-Tien Hsieh, Wen-Jung Chiang, Yu-Po Wang, Cheng-Hsu Hsiao, Sen-Yen Yang
  • Patent number: 7713846
    Abstract: A process applied to grinding, dicing, and/or stacking semiconductors is disclosed. One of its features is that after transparent material is stuck on its active surface, a semiconductor is ground from another surface thereof to become thinner, then take advantage of transparency of the transparent material to cut the transparent material and the semiconductor, to obtain at least one smaller semiconductor unit such as die or chip. Another feature is that the transparent material remains sticking to the active surface of the die by an adhesion layer until the die is attached to a carrier or another die, and then the transparent material and the adhesion layer are removed by taking advantage of a function of the adhesion layer: receiving a ray to lose adhesion between it and the active surface. Preferably the ray reaches the adhesion layer via the transparent material stuck on the active surface of the die.
    Type: Grant
    Filed: April 17, 2008
    Date of Patent: May 11, 2010
    Assignee: Siliconware Precision Industries Co., Ltd.
    Inventors: Ru-Sheng Liu, Han-Lung Tsai, Cheng-Hsu Hsiao
  • Patent number: 7679178
    Abstract: A semiconductor package on which a semiconductor device can be stacked and fabrication method thereof are provided. The fabrication method includes the steps of mounting and electrically connecting at least one semiconductor chip on the substrate, mounting an electrical connecting structure consisting of an upper layer circuit board and a lower layer circuit board on the substrate and electrically connecting the electrical connecting structure to the substrate, where the semiconductor chip is received in a receiving space formed in the electrical connecting structure; forming an encapsulant on the substrate encapsulating the semiconductor chip and the electrical connecting structure, and after the encapsulant is formed, exposing top surface of the upper layer circuit board with a plurality of solder pads from the encapsulant to allow at least one semiconductor device to electrically connect the upper layer circuit board so as to form a stack structure.
    Type: Grant
    Filed: October 12, 2007
    Date of Patent: March 16, 2010
    Assignee: Siliconware Precision Industries Co., Ltd.
    Inventors: Han-Ping Pu, Chien-Ping Huang, Chih-Ming Huang, Yu-Po Wang, Cheng-Hsu Hsiao
  • Publication number: 20100052146
    Abstract: A semiconductor package and a fabrication method are disclosed. The fabrication method includes applying a sacrificial layer on one surface of a metal carrier, applying an insulation layer on the sacrificial layer, and forming through holes in the sacrificial layer and the insulation layer to expose the metal carrier; forming a conductive metallic layer in each through hole; forming a patterned circuit layer on the insulation layer to be electrically connected to the conductive metallic layer; mounting at least a chip on the insulation layer and electrically connecting the chip to the patterned circuit layer; forming an encapsulant to encapsulate the chip and the patterned circuit layer; and removing the metal carrier and the sacrificial layer to expose the insulation layer and conductive metallic layer to allow the conductive metallic layer to protrude from the insulation layer.
    Type: Application
    Filed: November 12, 2009
    Publication date: March 4, 2010
    Applicant: SILICONWARE PRECISION INDUSTRIES CO., LTD.
    Inventors: Yih-Jenn Jiang, Han-Ping Pu, Chien-Ping Huang, Cheng-Hsu Hsiao
  • Patent number: 7671466
    Abstract: A semiconductor package with a heat dissipating device and a fabrication method of the semiconductor package are provided. A chip is mounted on a substrate. The heat dissipating device is mounted on the chip, and includes an accommodating room, and a first opening and a second opening that communicate with the accommodating room. An encapsulant is formed between the heat dissipating device and the substrate to encapsulate the chip. A cutting process is performed to remove a non-electrical part of structure and expose the first and second openings from the encapsulant. A cooling fluid is received in the accommodating room to absorb and dissipate heat produced by the chip. The heat dissipating device covers the encapsulant and the chip to provide a maximum heat transfer area for the semiconductor package.
    Type: Grant
    Filed: December 29, 2006
    Date of Patent: March 2, 2010
    Assignee: Siliconware Precision Industries Co., Ltd.
    Inventors: Han-Ping Pu, Chien-Ping Huang, Cheng-Hsu Hsiao
  • Patent number: 7666716
    Abstract: The present invention provides a semiconductor package and a fabrication method thereof. The method includes the steps of: providing a chip carrier module having a plurality of chip carriers, disposing a plurality of electrical connecting points on the chip carriers, performing chip mounting and molding on the chip carrier module to form an encapsulant encapsulating the semiconductor chip, exposing the electrical connecting points from the encapsulant; forming a patterned circuit layer on the encapsulant, electrically connecting the patterned circuit layer to the electrical connecting points, cutting and separating the chip carriers to form a plurality of semiconductor packages each having a circuit layer formed on the encapsulant such that the circuit layer provides extra electrical connecting points and thereby enhances electrical performance of electrical products. During a package stacking process, no package is limited by the design of another package below.
    Type: Grant
    Filed: February 9, 2009
    Date of Patent: February 23, 2010
    Assignee: Siliconware Precision Industries Co., Ltd.
    Inventors: Han-Ping Pu, Cheng-Hsu Hsiao
  • Publication number: 20100041181
    Abstract: A heat dissipating package structure includes a chip carrier; a semiconductor chip mounted and electrically connected to the chip carrier; a heat spreader having a first surface, an opposed second surface and a hollow structure, the second surface of the heat spreader being mounted on the chip, wherein the chip is larger in size than the hollow structure such that the chip is partly exposed to the hollow structure; an encapsulant formed between the heat spreader and the chip carrier, for encapsulating the chip, wherein the first surface and sides of the heat spreader are exposed from the encapsulant to dissipate heat produced from the chip; and a plurality of conductive elements disposed on the chip carrier, for electrically connecting the chip to an external device. The present invention also provides a method for fabricating the heat dissipating package structure.
    Type: Application
    Filed: September 25, 2009
    Publication date: February 18, 2010
    Applicant: SILICONWARE PRECISION INDUSTRIES CO., LTD.
    Inventors: Chien-Ping Huang, Cheng-Hsu Hsiao
  • Patent number: 7638879
    Abstract: A semiconductor package and a fabrication method are disclosed. The fabrication method includes applying a sacrificial layer on one surface of a metal carrier, applying an insulation layer on the sacrificial layer, and forming through holes in the sacrificial layer and the insulation layer to expose the metal carrier; forming a conductive metallic layer in each through hole; forming a patterned circuit layer on the insulation layer to be electrically connected to the conductive metallic layer; mounting at least a chip on the insulation layer and electrically connecting the chip to the patterned circuit layer; forming an encapsulant to encapsulate the chip and the patterned circuit layer; and removing the metal carrier and the sacrificial layer to expose the insulation layer and conductive metallic layer to allow the conductive metallic layer to protrude from the insulation layer.
    Type: Grant
    Filed: November 16, 2007
    Date of Patent: December 29, 2009
    Assignee: Siliconware Precision Industries Co., Ltd.
    Inventors: Yih-Jenn Jiang, Han-Ping Pu, Chien-Ping Huang, Cheng-Hsu Hsiao
  • Patent number: 7615862
    Abstract: A heat dissipating package structure includes a chip carrier; a semiconductor chip mounted and electrically connected to the chip carrier; a heat spreader having a first surface, an opposed second surface and a hollow structure, the second surface of the heat spreader being mounted on the chip, wherein the chip is larger in size than the hollow structure such that the chip is partly exposed to the hollow structure; an encapsulant formed between the heat spreader and the chip carrier, for encapsulating the chip, wherein the first surface and sides of the heat spreader are exposed from the encapsulant to dissipate heat produced from the chip; and a plurality of conductive elements disposed on the chip carrier, for electrically connecting the chip to an external device. The present invention also provides a method for fabricating the heat dissipating package structure.
    Type: Grant
    Filed: August 19, 2005
    Date of Patent: November 10, 2009
    Assignee: Siliconware Precision Industries Co., Ltd.
    Inventors: Chien-Ping Huang, Cheng-Hsu Hsiao
  • Patent number: 7608915
    Abstract: A heat dissipation semiconductor package includes a chip carrier, a semiconductor chip, a heat conductive adhesive, a heat dissipation member, and an encapsulant. The semiconductor chip is flip-chip mounted on the chip carrier and defined with a heat conductive adhesive mounting area. Periphery of the heat adhesive mounting area is spaced apart from edge of the semiconductor chip. The heat dissipation member is mounted on the heat conductive adhesive formed in the heat conductive adhesive mounting area. The encapsulant formed between the chip carrier and the heat dissipation member encapsulates the semiconductor chip and the heat conductive adhesive, and embeds edges of the active surface and non-active surface and side edge of the semiconductor chip, thereby increasing bonding area between the encapsulant and the semiconductor chip. The side edges of the heat conductive adhesive and the semiconductor chip are not flush with each other, thereby preventing propagation of delamination.
    Type: Grant
    Filed: May 8, 2008
    Date of Patent: October 27, 2009
    Assignee: Siliconware Precision Industries Co., Ltd.
    Inventors: Chun-Ming Liao, Chien-Ping Huang, Ho-Yi Tsai, Cheng-Hsu Hsiao
  • Publication number: 20090261476
    Abstract: A semiconductor device and a manufacturing method thereof are disclosed. The method includes the steps of providing a carrier board having conductive circuits disposed thereon and a plurality of chips with active surfaces having solder pads disposed thereon, wherein conductive bumps are disposed on the solder pads; mounting chips on the carrier board; filling the spacing between the chips with a dielectric layer and forming openings in the dielectric layer at periphery of each chip to expose the conductive circuits; forming a metal layer in the openings of the dielectric layer and at periphery of the active surface of the chips for electrically connecting the conductive bumps and the conductive circuits; and cutting along the dielectric layer between the chips and removing the carrier board to separate each chip and exposing the conductive circuits from the non-active surface.
    Type: Application
    Filed: April 18, 2008
    Publication date: October 22, 2009
    Applicant: Siliconware Precision Industries Co., Ltd.
    Inventors: Chien-Ping Huang, Chin-Huang Chang, Chih-Ming Huang, Cheng-Hsu Hsiao, Chun-Chi Ke