Patents by Inventor Cheng-Tung Huang

Cheng-Tung Huang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11018185
    Abstract: A layout pattern for magnetoresistive random access memory (MRAM) includes a first magnetic tunneling junction (MTJ) pattern on a substrate, a second MTJ pattern adjacent to the first MTJ pattern, and a third MTJ pattern between the first MTJ pattern and the second MTJ pattern. Preferably, the first MTJ pattern, the second MTJ pattern, and the third MTJ pattern constitute a staggered arrangement.
    Type: Grant
    Filed: January 20, 2020
    Date of Patent: May 25, 2021
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Yi-Ting Wu, Jian-Jhong Chen, Po-Chun Yang, Jhen-Siang Wu, Yung-Ching Hsieh, Bo-Chang Li, Jen-Yu Wang, Cheng-Tung Huang
  • Patent number: 10978122
    Abstract: A memory includes (n?1) non-volatile cells, (n?1) bit lines and a current driving circuit. Each of the (n?1) non-volatile cells includes a first terminal and a second terminal. An ith bit line of the (n?1) bit lines is coupled to a first terminal of an ith non-volatile cell of the (n?1) non-volatile cells. The current driving circuit includes n first transistors coupled to the (n?1) non-volatile cells.
    Type: Grant
    Filed: February 21, 2020
    Date of Patent: April 13, 2021
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chun-Yen Tseng, Yu-Tse Kuo, Chang-Hung Chen, Shu-Ru Wang, Ya-Lan Chiou, Chun-Hsien Huang, Chih-Wei Tsai, Hsin-Chih Yu, Yi-Ting Wu, Cheng-Tung Huang, Jen-Yu Wang, Jhen-Siang Wu, Po-Chun Yang, Yung-Ching Hsieh, Jian-Jhong Chen, Bo-Chang Li
  • Publication number: 20200253659
    Abstract: Endoluminal devices and methods that facilitate treatment of a desired treatment region of the gastrointestinal tract, in particular the duodenum, are provided herein. Such devices include a catheter having a treatment delivery portion disposed between proximal and distal balloons. The treatment can include thermal ablation of the treatment region by delivering a treatment fluid to the treatment region between the inflated balloons. In one aspect, the treatment fluid is delivered so as to fill the entire treatment region between the balloons without regard to the inflated balloon pressure. To ensure filling, the treatment fluid can be delivered into the treatment region until a pressure increase is observed or until a pre-determined volume is delivered. Other treatment devices and methods include means of uniformly distributing a treatment gas for plasma ablation, electrical ablation energy or a chemical or drug eluting stent.
    Type: Application
    Filed: April 29, 2020
    Publication date: August 13, 2020
    Applicant: Metaboscopy Medical, Inc.
    Inventors: Tsung-Chun Lee, Cheng-Tung Huang
  • Publication number: 20200187944
    Abstract: An anastomosis set for anastomosing a first end to be anastomosed with a second end to be anastomosed, such anastomosis set comprising: a first manipulator, with a first telescoping part at a distal end thereof, the first telescoping part is used for telescoping toward the first end to be anastomosed; a second manipulator, with a second telescoping part at a distal end thereof, the second telescoping part is used for telescoping toward the second end to be anastomosed; and an anastomosis mechanism for anastomosing the first end to be anastomosed with the second end to be anastomosed; the first manipulator including a first exit part through which the first manipulator will be removed from the first end to be anastomosed after anastomosing; the second manipulator has a second exit part, through which the second manipulator will be removed from the second end to be anastomosed after anastomosing.
    Type: Application
    Filed: November 11, 2019
    Publication date: June 18, 2020
    Applicant: VasoCollar, Inc.
    Inventors: Hsin-Lei Huang, Wei-Chen Hong, Cheng Tung Huang, Hang-Yi Lin, HSIN-HUI HUANG
  • Patent number: 10651235
    Abstract: A first MRAM set includes a first transistor and a second transistor. The first transistor includes a first gate structure, a first source/drain doping region and a first common source/drain doping region. The second transistor includes a second gate structure, a second source/drain doping region and the first common source/drain doping region. A second MTJ is disposed on the second transistor. The first common source/drain doping region electrically connects to the second MTJ. A first MTJ is disposed on the first transistor. The sizes of the first MTJ and the second MTJ are different. The second MTJ connects to the first MTJ in series. A bit line electrically connects the first MTJ. A source line electrically connects to the first source/drain doping region and the second source/drain doping region.
    Type: Grant
    Filed: March 8, 2019
    Date of Patent: May 12, 2020
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Yi-Ting Wu, Jhen-Siang Wu, Po-Chun Yang, Yung-Ching Hsieh, Zong-Sheng Zheng, Jian-Jhong Chen, Jen-Yu Wang, Cheng-Tung Huang
  • Publication number: 20200113686
    Abstract: Disclosed herein are representative embodiments of methods, apparatus, and systems used to deliver a prosthetic heart valve to a deficient valve. In one embodiment, for instance, a support structure and an expandable prosthetic valve are advanced through the aortic arch of a patient using a delivery system. The support structure is delivered to a position on or adjacent to the surface of the outflow side of the aortic valve (the support structure defining a support-structure interior). The expandable prosthetic valve is delivered into the aortic valve and into the support-structure interior. The expandable prosthetic heart valve is expanded while the expandable prosthetic heart valve is in the support-structure interior and while the support structure is at the position on or adjacent to the surface of the outflow side of the aortic valve, thereby causing one or more native leaflets of the aortic valve to be frictionally secured between the support structure and the expanded prosthetic heart valve.
    Type: Application
    Filed: December 9, 2019
    Publication date: April 16, 2020
    Inventors: Christopher J. Olson, Glen T. Rabito, Dustin P. Armer, Minh T. Ma, Devin H. Marr, Cheng-Tung Huang, Hiroshi Okabe, Kevin M. Stewart, Alison S. Curtis, Philip P. Corso, JR.
  • Publication number: 20200035680
    Abstract: A method for fabricating semiconductor device includes the steps of: forming a first fin-shaped structure on a substrate; forming a first single diffusion break (SDB) structure in the first fin-shaped structure; forming a first gate structure on the first SDB structure and a second gate structure on the first fin-shaped structure; forming an interlayer dielectric (ILD) layer around the first gate structure and the second gate structure; forming a patterned mask on the first gate structure; and performing a replacement metal gate (RMG) process to transform the second gate structure into a metal gate.
    Type: Application
    Filed: October 6, 2019
    Publication date: January 30, 2020
    Inventors: Yen-Wei Tung, Jen-Yu Wang, Cheng-Tung Huang, Yan-Jou Chen
  • Patent number: 10500047
    Abstract: Representative embodiments of methods, apparatus, and systems used to deliver a prosthetic heart valve to a deficient valve are disclosed. In one embodiment, for instance, a support structure and an expandable prosthetic valve are delivered to a position on or adjacent to the surface of the outflow side of the aortic valve (the support structure defining a support-structure interior) via a delivery system. The expandable prosthetic valve is delivered into the aortic valve and into the support-structure interior. The expandable, prosthetic heart valve is expanded while the expandable prosthetic heart valve is in the support-structure interior and while the support structure is at the position on or adjacent to the surface of the outflow side of the aortic valve, thereby causing one or more native leaflets of the aortic valve to be frictionally secured between the support structure and the expanded prosthetic heart valve.
    Type: Grant
    Filed: April 15, 2016
    Date of Patent: December 10, 2019
    Assignee: Edwards Lifesciences Corporation
    Inventors: Christopher J. Olson, Glen Thomas Rabito, Dustin P. Armer, Minh T. Ma, Devin H. Marr, Cheng-Tung Huang, Hiroshi Okabe, Kevin M. Stewart, Alison S. Curtis, Philip P. Corso, Jr.
  • Patent number: 10483264
    Abstract: A method for fabricating semiconductor device includes the steps of: forming a first fin-shaped structure on a substrate; forming a first single diffusion break (SDB) structure in the first fin-shaped structure; forming a first gate structure on the first SDB structure and a second gate structure on the first fin-shaped structure; forming an interlayer dielectric (ILD) layer around the first gate structure and the second gate structure; forming a patterned mask on the first gate structure; and performing a replacement metal gate (RMG) process to transform the second gate structure into a metal gate.
    Type: Grant
    Filed: July 27, 2017
    Date of Patent: November 19, 2019
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Yen-Wei Tung, Jen-Yu Wang, Cheng-Tung Huang, Yan-Jou Chen
  • Patent number: 10312235
    Abstract: A fin shaped structure and a method of forming the same. The method includes providing a substrate having a first fin structure and a second fin structure. Next, an insulation material layer is formed on the substrate. Then, a portion of the first fin structure is removed, to form a first recess. Following this, a first buffer layer and a first channel layer are formed sequentially in the first recess. Next, a portion of the second fin structure is removed, to form a second recess. Then, a second buffer layer and a second channel layer are formed in the second recess sequentially, wherein the second buffer layer is different from the first buffer layer.
    Type: Grant
    Filed: February 8, 2018
    Date of Patent: June 4, 2019
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Wen-Yin Weng, Cheng-Tung Huang, Wei-Heng Hsu, Yu-Ming Lin, Ya-Ru Yang
  • Publication number: 20190006360
    Abstract: A method for fabricating semiconductor device includes the steps of: forming a first fin-shaped structure on a substrate; forming a first single diffusion break (SDB) structure in the first fin-shaped structure; forming a first gate structure on the first SDB structure and a second gate structure on the first fin-shaped structure; forming an interlayer dielectric (ILD) layer around the first gate structure and the second gate structure; forming a patterned mask on the first gate structure; and performing a replacement metal gate (RMG) process to transform the second gate structure into a metal gate.
    Type: Application
    Filed: July 27, 2017
    Publication date: January 3, 2019
    Inventors: Yen-Wei Tung, Jen-Yu Wang, Cheng-Tung Huang, Yan-Jou Chen
  • Patent number: 10056463
    Abstract: A transistor includes a semiconductor channel layer, a gate structure, a gate insulation layer, an internal electrode, and a ferroelectric material layer. The gate structure is disposed on the semiconductor channel layer. The gate insulation layer is disposed between the gate structure and the semiconductor channel layer. The internal electrode is disposed between the gate insulation layer and the gate structure. The ferroelectric material layer is disposed between the internal electrode and the gate structure. A spacer is disposed on the semiconductor channel layer, and a trench surrounded by the spacer is formed above the semiconductor channel layer. The ferroelectric material layer is disposed in the trench, and the gate structure is at least partially disposed outside the trench. The ferroelectric material layer in the transistor of the present invention is used to enhance the electrical characteristics of the transistor.
    Type: Grant
    Filed: June 20, 2017
    Date of Patent: August 21, 2018
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Su Xing, Hsueh-Wen Wang, Chien-Yu Ko, Yu-Cheng Tung, Jen-Yu Wang, Cheng-Tung Huang, Yu-Ming Lin
  • Publication number: 20180166444
    Abstract: A fin shaped structure and a method of forming the same. The method includes providing a substrate having a first fin structure and a second fin structure. Next, an insulation material layer is formed on the substrate. Then, a portion of the first fin structure is removed, to form a first recess. Following this, a first buffer layer and a first channel layer are formed sequentially in the first recess. Next, a portion of the second fin structure is removed, to form a second recess. Then, a second buffer layer and a second channel layer are formed in the second recess sequentially, wherein the second buffer layer is different from the first buffer layer.
    Type: Application
    Filed: February 8, 2018
    Publication date: June 14, 2018
    Inventors: Wen-Yin Weng, Cheng-Tung Huang, Wei-Heng Hsu, Yu-Ming Lin, Ya-Ru Yang
  • Patent number: 9929154
    Abstract: A fin shaped structure and a method of forming the same. The method includes providing a substrate having a first fin structure and a second fin structure. Next, an insulation material layer is formed on the substrate. Then, a portion of the first fin structure is removed, to form a first recess. Following this, a first buffer layer and a first channel layer are formed sequentially in the first recess. Next, a portion of the second fin structure is removed, to form a second recess. Then, a second buffer layer and a second channel layer are formed in the second recess sequentially, wherein the second buffer layer is different from the first buffer layer.
    Type: Grant
    Filed: November 13, 2014
    Date of Patent: March 27, 2018
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Wen-Yin Weng, Cheng-Tung Huang, Wei-Heng Hsu, Yu-Ming Lin, Ya-Ru Yang
  • Publication number: 20180006129
    Abstract: A transistor includes a semiconductor channel layer, a gate structure, a gate insulation layer, an internal electrode, and a ferroelectric material layer. The gate structure is disposed on the semiconductor channel layer. The gate insulation layer is disposed between the gate structure and the semiconductor channel layer. The internal electrode is disposed between the gate insulation layer and the gate structure. The ferroelectric material layer is disposed between the internal electrode and the gate structure. A spacer is disposed on the semiconductor channel layer, and a trench surrounded by the spacer is formed above the semiconductor channel layer. The ferroelectric material layer is disposed in the trench, and the gate structure is at least partially disposed outside the trench. The ferroelectric material layer in the transistor of the present invention is used to enhance the electrical characteristics of the transistor.
    Type: Application
    Filed: June 20, 2017
    Publication date: January 4, 2018
    Inventors: Su Xing, Hsueh-Wen Wang, Chien-Yu Ko, Yu-Cheng Tung, Jen-Yu Wang, Cheng-Tung Huang, Yu-Ming Lin
  • Patent number: 9793296
    Abstract: A method for fabricating substrate of a semiconductor device includes the steps of: providing a first silicon layer; forming a dielectric layer on the first silicon layer; bonding a second silicon layer to the dielectric layer; removing part of the second silicon layer and part of the dielectric layer to define a first region and a second region on the first silicon layer, wherein the remaining of the second silicon layer and the dielectric layer are on the second region; and forming an epitaxial layer on the first region of the first silicon layer, wherein the epitaxial layer and the second silicon layer comprise same crystalline orientation.
    Type: Grant
    Filed: October 17, 2016
    Date of Patent: October 17, 2017
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Wen-Yin Weng, Cheng-Tung Huang, Ya-Ru Yang, Yi-Ting Wu, Yu-Ming Lin, Jen-Yu Wang
  • Patent number: 9722093
    Abstract: An oxide semiconductor transistor includes an oxide semiconductor channel layer, a metal gate, a gate insulation layer, an internal electrode, and a ferroelectric material layer. The metal gate is disposed on the oxide semiconductor channel layer. The gate insulation layer is disposed between the metal gate and the oxide semiconductor channel layer. The internal electrode is disposed between the gate insulation layer and the metal gate. The ferroelectric material layer is disposed between the internal electrode and the metal gate. The ferroelectric material layer in the oxide semiconductor transistor of the present invention is used to enhance the electrical characteristics of the oxide semiconductor transistor.
    Type: Grant
    Filed: September 1, 2016
    Date of Patent: August 1, 2017
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Su Xing, Hsueh-Wen Wang, Chien-Yu Ko, Yu-Cheng Tung, Jen-Yu Wang, Cheng-Tung Huang, Yu-Ming Lin
  • Patent number: 9632115
    Abstract: A method for deriving characteristic values of a MOS transistor is described. A set of ?k values is provided. A set of VBi values (i=1 to M, M?3) is provided. A set of RSDi,j (i=1 to M?1, j=i+1 to M) values each under a pair of VBi and VBj, or a set of Vtq_q,j (q is one of 1 to M, j is 1 to M excluding q) values under VBq is derived for each ?k, with an iteration method. The ?k value making the set of RSDi,j values or Vtq_q,j values closest to each other is determined as an accurate ?k value. The mean value of RSDi,j at the accurate ?k value is calculated as an accurate RSD value.
    Type: Grant
    Filed: May 14, 2013
    Date of Patent: April 25, 2017
    Assignee: United Microelectronics Corp.
    Inventors: Yi-Ting Wu, Cheng-Tung Huang, Tsung-Han Lee, Yi-Han Ye
  • Publication number: 20170040346
    Abstract: A method for fabricating substrate of a semiconductor device includes the steps of: providing a first silicon layer; forming a dielectric layer on the first silicon layer; bonding a second silicon layer to the dielectric layer; removing part of the second silicon layer and part of the dielectric layer to define a first region and a second region on the first silicon layer, wherein the remaining of the second silicon layer and the dielectric layer are on the second region; and forming an epitaxial layer on the first region of the first silicon layer, wherein the epitaxial layer and the second silicon layer comprise same crystalline orientation.
    Type: Application
    Filed: October 17, 2016
    Publication date: February 9, 2017
    Inventors: Wen-Yin Weng, Cheng-Tung Huang, Ya-Ru Yang, Yi-Ting Wu, Yu-Ming Lin, Jen-Yu Wang
  • Patent number: 9508799
    Abstract: A method for fabricating substrate of a semiconductor device is disclosed. The method includes the steps of: providing a first silicon layer; forming a dielectric layer on the first silicon layer; bonding a second silicon layer to the dielectric layer; removing part of the second silicon layer and part of the dielectric layer to define a first region and a second region on the first silicon layer, wherein the remaining of the second silicon layer and the dielectric layer are on the second region; and forming an epitaxial layer on the first region of the first silicon layer, wherein the epitaxial layer and the second silicon layer comprise same crystalline orientation.
    Type: Grant
    Filed: August 26, 2014
    Date of Patent: November 29, 2016
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Wen-Yin Weng, Cheng-Tung Huang, Ya-Ru Yang, Yi-Ting Wu, Yu-Ming Lin, Jen-Yu Wang