Patents by Inventor Cheng-Tung Huang

Cheng-Tung Huang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20070238241
    Abstract: A semiconductor structure is disclosed, including a substrate having therein a first well of a first conductivity type and a second well of a second conductivity type, a first MOS transistor of the first conductivity type and a second MOS transistor of the second conductivity type. The first MOS transistor is disposed on the second well, including a gate structure on the second well and a strained layer of the first conductivity type in an opening in the second well beside the gate structure. The difference between the cell parameter of a portion of the strained layer near the bottom of the opening and that of the substrate is less than the difference between the cell parameter of a portion of the strained layer apart from the bottom of the opening and that of the substrate. The second MOS transistor is disposed on the first well.
    Type: Application
    Filed: May 30, 2007
    Publication date: October 11, 2007
    Inventors: Shyh-Fann Ting, Cheng-Tung Huang, Wen-Han Hung, Li-Shian Jeng, Kun-Hsien Lee, Tzyy-Ming Cheng, Jing-Chang Wu, Tzermin Shen
  • Publication number: 20070238242
    Abstract: A method for fabricating a semiconductor structure is described. A substrate is provided, having thereon a gate structure and a spacer on the sidewall of the gate structure and having therein an S/D extension region beside the gate structure. An opening is formed in the substrate beside the spacer, and then an S/D region is formed in or on the substrate at the bottom of the opening. A metal silicide layer is formed on the S/D region and the gate structure, and then a stress layer is formed over the substrate.
    Type: Application
    Filed: April 6, 2006
    Publication date: October 11, 2007
    Inventors: Shyh-Fann Ting, Cheng-Tung Huang, Wen-Han Hung, Li-Shian Jeng, Tzyy-Ming Cheng
  • Publication number: 20070187727
    Abstract: A method of manufacturing a metal-oxide-semiconductor (MOS) transistor device is disclosed. A gate dielectric layer is formed on an active area of a substrate. A gate electrode is patterned on the gate dielectric layer. The gate electrode has vertical sidewalls and a top surface. A liner is formed on the vertical sidewalls of the gate electrode. A nitride spacer is formed on the liner. An ion implanted is performed to form a source/drain region. After salicide process, an STI region that isolates the active area is recessed, thereby forming a step height at interface between the active area and the STI region. The nitride spacer is removed. A nitride cap layer that borders the liner is deposited. The nitride cap layer has a specific stress status.
    Type: Application
    Filed: February 16, 2006
    Publication date: August 16, 2007
    Inventors: Shyh-Fann Ting, Cheng-Tung Huang, Wen-Han Hung, Tzyy-Ming Cheng, Tzer-Min Shen, Yi-Chung Sheng
  • Publication number: 20070128783
    Abstract: A semiconductor substrate having a first active region and a second active region for fabricating a first transistor and a second transistor is provided. A first gate structure and a second gate structure are formed on the first active region and the second active region and a first spacer is formed surrounding the first gate structure and the second gate structure. A source/drain region for the first transistor and the second transistor is formed. The first spacer is removed from the first gate structure and the second gate structure and a cap layer is disposed on the first transistor and the second transistor and the cap layer covering the second transistor is removed thereafter. An etching process is performed to form a recess in the substrate surrounding the second gate structure. An epitaxial layer is formed in the recess and the cap layer is removed from the first transistor.
    Type: Application
    Filed: December 5, 2006
    Publication date: June 7, 2007
    Inventors: Shyh-Fann Ting, Cheng-Tung Huang, Jing-Chang Wu, Kun-Hsien Lee, Wen-Han Hung, Li-Shian Jeng, Tzer-Min Shen, Tzyy-Ming Cheng, Nien-Chung Li
  • Publication number: 20070111416
    Abstract: A method of fabricating strained-silicon transistors includes providing a semiconductor substrate, in which the semiconductor substrate includes a gate, at least a spacer, and a source/drain region; performing a first rapid thermal annealing (RTA) process; removing the spacer and forming a high tensile stress film over the surface of the gate and the source/drain region; and performing a second rapid thermal annealing process.
    Type: Application
    Filed: November 14, 2005
    Publication date: May 17, 2007
    Inventors: Cheng-Tung Huang, Chia-Wen Liang, Tzyy-Ming Cheng, Tzer-Min Shen, Yi-Chung Sheng
  • Publication number: 20060263978
    Abstract: A flash memory cell including a first conductive type substrate, a second conductive type well, a patterned film layer, a second conductive type doped region, a tunneling dielectric layer, a plurality of floating gates, an inter-gate dielectric layer and a plurality of control gates is provided. The floating gates are formed on the first conductive type substrate outside the patterned film layer. The floating gates have a thickness greater than the patterned film layer. Thus, the overlapping area between the floating gates and the control gates and hence the coupling ratio of the flash memory cell is increased.
    Type: Application
    Filed: August 2, 2006
    Publication date: November 23, 2006
    Applicant: POWERCHIP SEMICONDUCTOR CORP.
    Inventors: Leo Wang, Cheng-Tung Huang, Saysamone Pittikoun
  • Patent number: 7135365
    Abstract: First, a substrate having a plurality of NMOS transistor regions and PMOS transistor regions is provided. The substrate further includes a plurality of gate structures respectively positioned in the NMOS transistor regions and the PMOS transistor regions. A high-tensile thin film is then formed on the substrate and the plurality of gate structures. Subsequently, an annealing process is performed, and the high-tensile thin film is removed after the annealing process.
    Type: Grant
    Filed: March 30, 2005
    Date of Patent: November 14, 2006
    Assignee: United Microelectronics Corp.
    Inventors: Yi-Cheng Liu, Wen-Chi Chen, Tzu-Yun Chang, Bang-Chiang Lan, Cheng-Tung Huang, Wei-Tsun Shiau, Kuan-Yang Liao
  • Publication number: 20060228847
    Abstract: First, a substrate having a plurality of NMOS transistor regions and PMOS transistor regions is provided. The substrate further includes a plurality of gate structures respectively positioned in the NMOS transistor regions and the PMOS transistor regions. A high-tensile thin film is then formed on the substrate and the plurality of gate structures. Subsequently, an annealing process is performed, and the high-tensile thin film is removed after the annealing process.
    Type: Application
    Filed: March 30, 2005
    Publication date: October 12, 2006
    Inventors: Yi-Cheng Liu, Wen-Chi Chen, Tzu-Yun Chang, Bang-Chiang Lan, Cheng-Tung Huang, Wei-Tsun Shiau, Kuan-Yang Liao
  • Publication number: 20060228843
    Abstract: A method of fabricating semiconductor devices is provided. A plurality of gate structures is formed over a substrate. A source region and a drain region are formed in the substrate and adjacent to sidewalls of each gate structure. A self-aligned salicide block (SAB) layer is formed over the substrate to cover the gate structures and the exposed surface of the substrate. An anneal process is performed. The SAB layer creates a tension stress during the anneal process so that the substrate under the gate structures is subjected to the tension stress. A portion of the SAB layer is removed to expose a portion of the gate structures and a portion of the surface of the substrate. A salicide process is performed.
    Type: Application
    Filed: April 12, 2005
    Publication date: October 12, 2006
    Inventors: Alex Liu, Cheng-Tung Huang, Wei-Tsun Shiau, Kuan-Yang Liao
  • Publication number: 20060216893
    Abstract: A manufacturing method of a flash memory cell is provided. The flash memory cell includes a first conductive type substrate, a stacked gate structure, a first conductive type source/drain region, a metal silicide layer, an inter-layer dielectric layer and a contact plug. The first conductive type substrate has a second conductive type shallow well already formed thereon. The metal silicide layer is disposed within the first conductive type drain region. The contact plug is disposed within the inter-layer dielectric layer and electrically connected with the metal silicide layer in the first conductive type drain region to reduce resistance between the contact plug, the first conductive type drain region and the second conductive type shallow well and increase read-out speed of the flash memory.
    Type: Application
    Filed: May 9, 2006
    Publication date: September 28, 2006
    Inventors: Leo Wang, Chien-Chih Du, Chao-Wei Kuo, Cheng-Tung Huang, Saysamone Pittikoun
  • Patent number: 7109082
    Abstract: A flash memory cell including a first conductive type substrate, a second conductive type well, a patterned film layer, a second conductive type doped region, a tunneling dielectric layer, a plurality of floating gates, an inter-gate dielectric layer and a plurality of control gates is provided. The floating gates are formed on the first conductive type substrate outside the patterned film layer. The floating gates have a thickness greater than the patterned film layer. Thus, the overlapping area between the floating gates and the control gates and hence the coupling ratio of the flash memory cell is increased.
    Type: Grant
    Filed: December 21, 2004
    Date of Patent: September 19, 2006
    Assignee: Powerchip Semiconductor Corp.
    Inventors: Leo Wang, Cheng-Tung Huang, Saysamone Pittikoun
  • Publication number: 20060099763
    Abstract: A method of manufacturing a metal-oxide-semiconductor (MOS) transistor device is disclosed. A semiconductor substrate having a main surface is prepared. A gate dielectric layer is formed on the main surface. A gate electrode is patterned on the gate dielectric layer. The gate electrode has vertical sidewalls and a top surface. A liner is formed on the vertical sidewalls of the gate electrode. A silicon nitride spacer is formed on the liner. The main surface is then ion implanted using the gate electrode and the silicon nitride spacer as an implantation mask, thereby forming a source/drain region of the MOS transistor device in the main surface. The silicon nitride spacer is removed. A silicon nitride cap layer that borders the liner is deposited. The silicon nitride cap layer has a specific stress status.
    Type: Application
    Filed: October 28, 2004
    Publication date: May 11, 2006
    Inventors: Yi-Cheng Liu, Jiunn-Ren Hwang, Wei-Tsun Shiau, Cheng-Tung Huang, Kuan-Yang Liao
  • Publication number: 20060094195
    Abstract: A method of manufacturing a metal-oxide-semiconductor (MOS) transistor device is disclosed. A semiconductor substrate having a main surface is prepared. A gate dielectric layer is formed on the main surface. A gate electrode is patterned on the gate dielectric layer. The gate electrode has vertical sidewalls and a top surface. A liner is formed on the vertical sidewalls of the gate electrode. A silicon nitride spacer is formed on the liner. The main surface is then ion implanted using the gate electrode and the silicon nitride spacer as an implantation mask, thereby forming a source/drain region of the MOS transistor device in the main surface. The silicon nitride spacer is removed. A silicon nitride cap layer that borders the liner is deposited. The silicon nitride cap layer has a specific stress status.
    Type: Application
    Filed: November 8, 2005
    Publication date: May 4, 2006
    Inventors: Yi-Cheng Liu, Jiunn-Ren Hwang, Wei-Tsun Shiau, Cheng-Tung Huang, Kuan-Yang Liao
  • Publication number: 20060008981
    Abstract: A flash memory cell including a first conductive type substrate, a second conductive type well, a patterned film layer, a second conductive type doped region, a tunneling dielectric layer, a plurality of floating gates, an inter-gate dielectric layer and a plurality of control gates is provided. The floating gates are formed on the first conductive type substrate outside the patterned film layer. The floating gates have a thickness greater than the patterned film layer. Thus, the overlapping area between the floating gates and the control gates and hence the coupling ratio of the flash memory cell is increased.
    Type: Application
    Filed: December 21, 2004
    Publication date: January 12, 2006
    Inventors: Leo Wang, Cheng-Tung Huang, Saysamone Pittikoun
  • Publication number: 20050280068
    Abstract: A flash memory cell includes a first conductive type substrate, a stacked gate structure, a first conductive type source/drain region, a metal silicide layer, an inter-layer dielectric layer and a contact plug. The first conductive type substrate has a second conductive type shallow well already formed thereon. The metal silicide layer is disposed within the first conductive type drain region. The contact plug is disposed within the inter-layer dielectric layer and electrically connected with the metal silicide layer in the first conductive type drain region to reduce resistance between the contact plug, the first conductive type drain region and the second conductive type shallow well and increase read-out speed of the flash memory.
    Type: Application
    Filed: May 18, 2005
    Publication date: December 22, 2005
    Inventors: Leo Wang, Chien-Chih Du, Chao-Wei Kuo, Cheng-Tung Huang, Saysamone Pittikoun
  • Patent number: 6955929
    Abstract: A predetermined voltage is applied respectively on a first gate of a first metal-oxide semiconductor (MOS) transistor with a known channel length and a second gate of a second MOS transistor with an unknown channel length. A first inverse gate leakage current of the first MOS transistor and a second inverse gate leakage current of the second MOS transistor are then measured. By using the first and second inverse gate leakage currents, the channel widths of the first and the second gates, the channel length of the first gate and an equation, the channel length of the second gate is obtained.
    Type: Grant
    Filed: April 23, 2004
    Date of Patent: October 18, 2005
    Assignee: United Microelectronics Corp.
    Inventors: Cheng-Tung Huang, Sheng-Hao Lin, Nien-Chung Li, Yi-Cheng Sheng
  • Patent number: 6952369
    Abstract: A method for writing a memory module includes providing a plurality of memory cells, applying a first transmission line voltage to the first transmission line of the column of a memory cell, turning on a P-type channel of a memory cell between the memory cell to be written and the first transmission line of the column of the memory cell, turning off the P-type channel of at least one memory cell between the memory cell and the second transmission line of the column of the memory cell, applying a word line voltage to a word line connected to the memory cell, in order to inject hot electrons on a junction between the substrate and the first P-type doped region of the memory cell into a silicon nitride layer of the memory cell using band-to-band tunneling injection, and applying a substrate voltage to the substrates of the plurality of memory cells.
    Type: Grant
    Filed: December 22, 2003
    Date of Patent: October 4, 2005
    Assignee: eMemory Technology Inc.
    Inventors: Ching-Hsiang Hsu, Ching-Sung Yang, Jih-Wen Chou, Cheng-Tung Huang, Chih-Hsun Chu
  • Publication number: 20050030789
    Abstract: A method for writing a memory module includes providing a plurality of memory cells, applying a first transmission line voltage to the first transmission line of the column of a memory cell, turning on a P-type channel of a memory cell between the memory cell to be written and the first transmission line of the column of the memory cell, turning off the P-type channel of at least one memory cell between the memory cell and the second transmission line of the column of the memory cell, applying a word line voltage to a word line connected to the memory cell, in order to inject hot electrons on a junction between the substrate and the first P-type doped region of the memory cell into a silicon nitride layer of the memory cell using band-to-band tunneling injection, and applying a substrate voltage to the substrates of the plurality of memory cells.
    Type: Application
    Filed: December 22, 2003
    Publication date: February 10, 2005
    Inventors: Ching-Hsiang Hsu, Ching-Sung Yang, Jih-Wen Chou, Cheng-Tung Huang, Chih-Hsun Chu
  • Publication number: 20040214356
    Abstract: A predetermined voltage is applied respectively on a first gate of a first metal-oxide semiconductor (MOS) transistor with a known channel length and a second gate of a second MOS transistor with an unknown channel length. A first inverse gate leakage current of the first MOS transistor and a second inverse gate leakage current of the second MOS transistor are then measured. By using the first and second inverse gate leakage currents, the channel widths of the first and the second gates, the channel length of the first gate and an equation, the channel length of the second gate is obtained.
    Type: Application
    Filed: April 23, 2004
    Publication date: October 28, 2004
    Inventors: Cheng-Tung Huang, Sheng-Hao Lin, Nien-Chung Li, Yi-Cheng Sheng
  • Patent number: 6801456
    Abstract: A method for programming PMOS single transistor flash memory cells through channel hot carrier induced hot electron injection mechanism is disclosed. The PMOS single transistor flash memory cell includes an ONO stack layer situated on an N-well of a semiconductor substrate, a P+ poly gate formed on the ONO stack layer, a P+ doped source region disposed in the N-well at one side of the gate, and a P+ doped drain region disposed in the N-well at the other side of the gate. The method includes the steps of: applying a word line voltage VWL on the P+ poly gate, applying a source line voltage VSL on the source, wherein the source line voltage VSL is greater than the word line voltage VWL, thereby providing adequate bias to turn on the P channel thereof.
    Type: Grant
    Filed: December 17, 2003
    Date of Patent: October 5, 2004
    Assignee: eMemory Technology Inc.
    Inventors: Ching-Hsiang Hsu, Chih-Hsun Chu, Jih-Wen Chou, Cheng-Tung Huang