Patents by Inventor Cheng-Yu Hsieh

Cheng-Yu Hsieh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140340413
    Abstract: A data access method is provided. The data access method is applied for a data device access device to access data from N layers to display an image, where N is a positive integer. Each of the N layers includes a horizontal start point, a horizontal end point, a vertical start point and a vertical end point. The data access method includes: dividing the image into a plurality of regions according to the horizontal start points, the horizontal end points, the vertical start points and the vertical end points, wherein the regions respectively correspond to the N layers; and accessing data from the respective layers corresponding to the regions when displaying the image.
    Type: Application
    Filed: May 13, 2014
    Publication date: November 20, 2014
    Applicant: MStar Semiconductor, Inc.
    Inventors: Chih-Hao Chang, Cheng-Yu Hsieh
  • Publication number: 20140342142
    Abstract: A graphene transparent conductive film, Which includes a plurality of graphene sheets and a transparent conductive binder binding the graphene sheets to form the graphene transparent conductive film. The weight ratio of the graphene sheets to the transparent conductive binder is within a range of 0.01 to 1 wt %, and the volume percentage of the transparent conductive binder in the graphene transparent conductive film is within a range of 0.5 to 10%. The transparent conductive binder is a transparent conductive polymer comprising at least one structure of polythiophene and polycationic polymer. The graphene sheets are stacked and bound together by the transparent conductive binder to form the integrated conductive network structure such that the resulting graphene transparent conductive film still has lower sheet resistance with high transparency. Therefore, the present invention can be formed on the flexible support body and greatly expand the field of application.
    Type: Application
    Filed: September 20, 2013
    Publication date: November 20, 2014
    Applicant: ENERAGE INC.
    Inventors: Mark Y. WU, Cheng-Yu Hsieh, Cheng-Shu Peng
  • Publication number: 20140308522
    Abstract: The present invention relates to a nano-graphite plate structure with N graphene layers stacked together, where N is 30 to 300. The nanometer nano-graphite structure has a tap density of 0.1 g/cm3 to 0.01 cm3, a thickness of 10 nm to 100 nm, and a lateral dimension of 1 ?m to 100 ?m. The ratio of the lateral dimension to the thickness is between 10 and 10,000. The oxygen content is less than 3 wt %, and the carbon content is larger than 95 wt %. The nano-graphite plate structure has both the excellent features of the graphene and the original advantages of easy processability of the natural graphite so as to be broadly used in various application fields.
    Type: Application
    Filed: April 12, 2013
    Publication date: October 16, 2014
    Applicant: Enerage Inc.
    Inventors: Mark Y. WU, Cheng-Yu HSIEH, Geng-Wei LIN, Ping-Yun YEH
  • Patent number: 8851735
    Abstract: A uniform reflective light-guide apparatus can accompany an optional edge light source and includes a light-guiding layer, a reflective layer and a light-exiting surface. The light-guiding layer further has a lateral side to define a light-introducing surface for allowing entrance of lights from the edge light source. The reflective layer is to reflect incident lights back to the light-guiding layer. The light-exiting surface perpendicular to the light-introducing surface is to allow at least a portion of the lights in the light-guiding layer to leave the light-guide apparatus. The reflective layer and the light-guiding layer are manufactured integrally by a co-extrusion process so as to avoid possible existence of an air spacing between the reflective layer and the light-guiding layer.
    Type: Grant
    Filed: July 20, 2011
    Date of Patent: October 7, 2014
    Assignee: Entire Technology Co. Ltd
    Inventors: Jia-Jen Chen, Yu-Chun Tao, Yan Zuo Chen, Hao-Xiang Lin, Cheng-Yu Hsieh
  • Patent number: 8854235
    Abstract: A decompression circuit for decompressing data includes a first decompression unit and a second decompression unit. The data sequentially includes a compressed first string, a compressed distance-length pair and a compressed second string. The first decompression unit performs a first decompression on the data to obtain a first string, a distance-length pair and a second string. The second decompression unit receives and decompresses the first string, the distance-length pair and the second string. The first decompression unit does not involve data associated with the distance-length pair when decompression the second string.
    Type: Grant
    Filed: September 5, 2013
    Date of Patent: October 7, 2014
    Assignee: MStar Semiconductor, Inc.
    Inventors: Yu-Hsiang Tseng, Chih-Hao Chang, Cheng-Yu Hsieh
  • Patent number: 8854234
    Abstract: A decompression circuit includes a first decompression unit and a second decompression unit. The first decompression unit performs a first decompression operation on data to generate first decompressed data. The first decompressed data includes a plurality of literals and a distance-length pair. The second decompression unit receives the first decompressed data, and sequentially performs a second decompression operation on the literals and the distance-length pair to generate second decompressed data. After the second decompression unit receives the distance-length pair from the first decompression unit and before the second decompression unit completes decompressing the distance-length pair, the second decompression unit transmits data required for the subsequent first decompression operation performed by the first decompression unit to the first decompression unit according to the distance-length pair.
    Type: Grant
    Filed: September 5, 2013
    Date of Patent: October 7, 2014
    Assignee: MStar Semiconductor, Inc.
    Inventors: Yu-Hsiang Tseng, Chih-Hao Chang, Cheng-Yu Hsieh
  • Publication number: 20140292547
    Abstract: A decompression circuit for decompressing data includes a first decompression unit and a second decompression unit. The data sequentially includes a compressed first string, a compressed distance-length pair and a compressed second string. The first decompression unit performs a first decompression on the data to obtain a first string, a distance-length pair and a second string. The second decompression unit receives and decompresses the first string, the distance-length pair and the second string. The first decompression unit does not involve data associated with the distance-length pair when decompression the second string.
    Type: Application
    Filed: September 5, 2013
    Publication date: October 2, 2014
    Applicant: MStar Semiconductor, Inc.
    Inventors: Yu-Hsiang Tseng, Chih-Hao Chang, Cheng-Yu Hsieh
  • Publication number: 20140292546
    Abstract: A decompression circuit includes a first decompression unit and a second decompression unit. The first decompression unit performs a first decompression operation on data to generate first decompressed data. The first decompressed data includes a plurality of literals and a distance-length pair. The second decompression unit receives the first decompressed data, and sequentially performs a second decompression operation on the literals and the distance-length pair to generate second decompressed data. After the second decompression unit receives the distance-length pair from the first decompression unit and before the second decompression unit completes decompressing the distance-length pair, the second decompression unit transmits data required for the subsequent first decompression operation performed by the first decompression unit to the first decompression unit according to the distance-length pair.
    Type: Application
    Filed: September 5, 2013
    Publication date: October 2, 2014
    Applicant: MStar Semiconductor, Inc.
    Inventors: Yu-Hsiang Tseng, Chih-Hao Chang, Cheng-Yu Hsieh
  • Patent number: 8842239
    Abstract: A light-guide apparatus for accompanying an edge light source to form a backlight module for an LCD display includes an upper light-distributing layer, a middle light-guiding layer and a lower reflective layer. The light-guiding layer further defines a light-introducing surface for allowing lights emitted from the edge light source to enter the light-guiding layer. The reflective layer reflects the lights back to the light-guiding layer. A light-exiting surface for allowing at least a portion of the lights to leave the light-guiding layer is defined on the top surface of the light-distributing layer and is perpendicular to the light-introducing surface. The light-distributing layer, the light-guiding layer and the reflective layer are manufactured integrally into a unique piece by a co-extrusion process so as to avoid possible existence of air spacing in between. Three-dimensional micro-structures are constructed on a reflective surface interfacing the reflective layer and the light-guiding layer.
    Type: Grant
    Filed: July 20, 2011
    Date of Patent: September 23, 2014
    Assignee: Entire Technology Co., Ltd.
    Inventors: Jia-Jen Chen, Yu-Chun Tao, Yan Zuo Chen, Hao-Xiang Lin, Cheng-Yu Hsieh
  • Publication number: 20140218381
    Abstract: An image access method applicable to an image access device is provided. The method includes: providing a plurality of codes that respectively represent a plurality of image sources; determining a plurality of sets of access settings according to a pixel format arrangement, each set of access setting corresponding to a code arrangement combination composed of the codes; and sequentially accessing data of the image sources by the image access apparatus according to the code arrangement combinations corresponding to the access settings.
    Type: Application
    Filed: February 5, 2014
    Publication date: August 7, 2014
    Applicant: MStar Semiconductor, Inc.
    Inventors: Chih-Hao Chang, Huan-Chun Tseng, Cheng-Yu Hsieh
  • Patent number: 8771630
    Abstract: A method for the preparation of graphene is provided, which includes: (a) oxidizing a graphite material to form graphite oxide; (b) dispersing graphite oxide into water to form an aqueous suspension of graphite oxide; (c) adding a dispersing agent to the aqueous suspension of graphite oxide; and (d) adding an acidic reducing agent to the aqueous suspension of graphite oxide, wherein graphite oxide is reduced to graphene by the acidic reducing agent, and graphene is further bonded with the dispersing agent to form a graphene dispersion containing a surface-modified graphene. The present invention provides a method for the preparation of graphene using an acidic reducing agent. The obtained graphene can be homogeneously dispersed in water, an acidic solution, a basic solution, or an organic solution.
    Type: Grant
    Filed: January 26, 2012
    Date of Patent: July 8, 2014
    Assignee: Enerage, Inc.
    Inventors: Yi-Shuen Wu, Cheng-Yu Hsieh, Cheng-Shu Peng, Jing-Ru Chen, Jun-Meng Lin, Geng-Wei Lin
  • Patent number: 8722004
    Abstract: The present invention relates to a method for the preparation of a lithium phosphate compound with an olivine crystal structure, which has a chemical formula of LixMyM?1-yPO4, wherein 0.1?x?1, 0?y?1. The nano-scale lithium phosphate ceramic powder was synthesized by using a self-propagating combustion with reactants of soluble salts and the proper oxidizing agents, followed by heat treatment of powder to obtain nano-scale lithium phosphate compound with an olivine crystal structure in a complete crystal phase. The method of the present invention uses low cost materials and simple processes. The uniform crystal product materials are beneficial to the industrial application.
    Type: Grant
    Filed: June 4, 2009
    Date of Patent: May 13, 2014
    Assignee: Phosage, Inc.
    Inventors: Mark Y. Wu, Cheng-Yu Hsieh, Chih-Hao Chiu
  • Patent number: 8655083
    Abstract: An image processing system includes a difference detecting module for determining whether second image data is identical to first image data to generate a determination result, and an image processing module for processing the first image data to generate a first image processed result and selectively processing the second image data. The image processing module includes a data path and a control path. According to a reference clock signal, the first and second image data are transmitted via the data path, and the determination result is transmitted via the control path. When the determination result is affirmative, the reference clock signal provided to the data path is gated, so that, without processing the second image data, the image processing module outputs the first image processed result as a second image output corresponding to the second image data.
    Type: Grant
    Filed: June 15, 2012
    Date of Patent: February 18, 2014
    Assignee: Mstar Semiconductor, Inc.
    Inventor: Cheng-Yu Hsieh
  • Publication number: 20130327704
    Abstract: An electrochemical separation membrane and the manufacturing method thereof are disclosed. The method includes: a polymer solution preparing step to mix a polymer material, solvent and ceramic precursors thoroughly to form a polymer solution, wherein the polymer material and the ceramic precursors are dissolved uniformly in the solvent; a coating step to coat the polymer solution on a porous base material; a hydrolysis step to cause the porous base material coated with the polymer solution to contact an aqueous solution to hydrolyze the ceramic precursor into ceramic particles; and a drying step to remove the water and the solvent from the porous base material and in order to form the electrochemical separation membrane. The electrochemical separation membrane made of this method have better ion conductivity, interface stability and thermal stability based on the ceramic particles.
    Type: Application
    Filed: November 7, 2012
    Publication date: December 12, 2013
    Applicant: ENERAGE INC.
    Inventors: Mark Y. Wu, Cheng-Yu Hsieh, Yuan-Hsin Chang, Jing-Ru Chen, Shu-Ling Hsieh
  • Publication number: 20130327702
    Abstract: A structure of an electrochemical separation membrane and a manufacturing method for fabricating the same are disclosed. The structure of an electrochemical separation membrane includes a base-phased polymer part in form of a continuous phase structure, a fabric-supported part distributed in the base-phased polymer part in striped shape to provide mechanic strength thereto, and inorganic particles distributed uniformly in the base-phased polymer part with 0.1 wt %˜50 wt %, wherein the fabric-supported part is a porous structure with a plurality of micro holes such that the base-phased polymer part filled into the micro holes to obtain better adhesive strength, inorganic particles distributed uniformly in the base-phased polymer part to reduce the shrinking of separation membrane and hence improving the thermal stability under high temperature.
    Type: Application
    Filed: November 7, 2012
    Publication date: December 12, 2013
    Applicant: ENERAGE INC.
    Inventors: Mark Y. Wu, Cheng-Yu Hsieh, Yuan-Hsin Chang, Jing-Ru Chen, Shu-Ling Hsieh
  • Publication number: 20130216140
    Abstract: An image processing system includes a difference detecting module for determining whether second image data is identical to first image data to generate a determination result, and an image processing module for processing the first image data to generate a first image processed result and selectively processing the second image data. The image processing module includes a data path and a control path. According to a reference clock signal, the first and second image data are transmitted via the data path, and the determination result is transmitted via the control path. When the determination result is affirmative, the reference clock signal provided to the data path is gated, so that, without processing the second image data, the image processing module outputs the first image processed result as a second image output corresponding to the second image data.
    Type: Application
    Filed: June 15, 2012
    Publication date: August 22, 2013
    Applicant: MStar Semiconductor, Inc.
    Inventor: Cheng-Yu Hsieh
  • Publication number: 20130197256
    Abstract: A method for the preparation of graphene is provided, which includes: (a) oxidizing a graphite material to form graphite oxide; (b) dispersing graphite oxide into water to form an aqueous suspension of graphite oxide; (c) adding a dispersing agent to the aqueous suspension of graphite oxide; and (d) adding an acidic reducing agent to the aqueous suspension of graphite oxide, wherein graphite oxide is reduced to graphene by the acidic reducing agent, and graphene is further bonded with the dispersing agent to form a graphene dispersion containing a surface-modified graphene. The present invention provides a method for the preparation of graphene using an acidic reducing agent. The obtained graphene can be homogeneously dispersed in water, an acidic solution, a basic solution, or an organic solution.
    Type: Application
    Filed: January 26, 2012
    Publication date: August 1, 2013
    Inventors: Yi-Shuen WU, Cheng-Yu Hsieh, Cheng-Shu Peng, Jing-Ru Chen, Jun-Meng Lin, Geng-Wei Lin
  • Patent number: 8431425
    Abstract: A method for fabricating an image sensor is provided. A substrate is provided, and then a plurality of photoresist patterns is formed on the substrate. The photoresist patterns are arranged in a first array and defined by a plurality of photomask patterns arranged as a photomask pattern array, wherein a top view of each photoresist pattern has a substantially square shape and a distance between two neighboring photoresist patterns decreases from a center of the first array toward an edge of the first array. Besides, each photomask pattern includes a transparent portion and an opaque portion, wherein an area proportion of the transparent portion included in a photomask pattern increases from the center toward the edge of the photomask pattern array. Then, a thermal reflow step is performed to convert the photoresist patterns into a plurality of microlenses arranged in a second array.
    Type: Grant
    Filed: May 11, 2012
    Date of Patent: April 30, 2013
    Assignee: United Microelectronics Corp.
    Inventor: Cheng-Yu Hsieh
  • Patent number: 8278189
    Abstract: The present invention provides a method of thinning a wafer. First, a wafer is provided. The wafer includes an active surface, a back surface and a side surface. The active surface is disposed opposite to the back surface. The side surface is disposed between the active surface and the back surface and encompasses the peripheral of the wafer. Next, a protective structure is formed on the wafer to at least completely cover the side surface. Last, a thinning process is performed upon the wafer from the back surface.
    Type: Grant
    Filed: September 2, 2010
    Date of Patent: October 2, 2012
    Assignee: United Microelectronics Corp.
    Inventor: Cheng-Yu Hsieh
  • Publication number: 20120225516
    Abstract: A method for fabricating an image sensor is provided. A substrate is provided, and then a plurality of photoresist patterns is formed on the substrate. The photoresist patterns are arranged in a first array, wherein a top view of each photoresist pattern has a substantially square shape and a distance between two neighboring photoresist patterns decreases from a center of the first array toward an edge of the first array. Then, a thermal reflow step is performed to convert the photoresist patterns into a plurality of microlenses arranged in a second array.
    Type: Application
    Filed: May 11, 2012
    Publication date: September 6, 2012
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventor: Cheng-Yu HSIEH