Patents by Inventor Chengwen Pei

Chengwen Pei has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8395217
    Abstract: A semiconductor device structure having an isolation region and method of manufacturing the same are provided. The semiconductor device structure includes a silicon-on-insulator (SOI) substrate. A plurality of gates is formed on the SOI substrate. The semiconductor device structure further includes trenches having sidewalls, formed between each of the plurality of gates. The semiconductor device structure further includes an epitaxial lateral growth layer formed in the trenches. The epitaxial lateral growth layer is grown laterally from the opposing sidewalls of the trenches, so that the epitaxial lateral growth layer encloses a portion of the trenches extended into the SOI substrate. The epitaxial lateral growth layer is formed in such way that it includes an air gap region overlying a buried dielectric layer of the SOI substrate.
    Type: Grant
    Filed: October 27, 2011
    Date of Patent: March 12, 2013
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Joseph Ervin, Jeffrey B. Johnson, Pranita Kulkarni, Kevin McStay, Paul C. Parries, Chengwen Pei, Geng Wang, Yanli Zhang
  • Patent number: 8384145
    Abstract: Each of a hot-carrier non-volatile memory device and a method for fabricating the hot carrier non-volatile memory device is predicated upon a semiconductor structure and related method that includes a metal oxide semiconductor field effect transistor structure. The semiconductor structure and related method include at least one of: (1) a spacer that comprises a dielectric material having a dielectric constant greater than 7 (for enhanced hot carrier derived charge capture and retention); and (2) a drain region that comprises a semiconductor material that has a narrower bandgap than a bandgap of a semiconductor material from which is comprised a channel region (for enhanced impact ionization and charged carrier generation).
    Type: Grant
    Filed: January 25, 2010
    Date of Patent: February 26, 2013
    Assignee: International Business Machines Corporation
    Inventors: Roger Allen Booth, Jr., Kangguo Cheng, Chandrasekharan Kothandaraman, Chengwen Pei
  • Publication number: 20130032859
    Abstract: A pair of horizontal-step-including trenches are formed in a semiconductor layer by forming a pair of first trenches having a first depth around a gate structure on the semiconductor layer, forming a disposable spacer around the gate structure to cover proximal portions of the first trenches, and by forming a pair of second trenches to a second depth greater than the first depth. The disposable spacer is removed, and selective epitaxy is performed to form an integrated epitaxial source and source extension region and an integrated epitaxial drain and drain extension region. A replacement gate structure can be formed after deposition and planarization of a planarization dielectric layer and subsequent removal of the gate structure and laterally expand the gate cavity over expitaxial source and drain extension regions. Alternately, a contact-level dielectric layer can be deposited directly on the integrated epitaxial regions and contact via structures can be formed therein.
    Type: Application
    Filed: August 4, 2011
    Publication date: February 7, 2013
    Applicant: International Business Machines Corporation
    Inventors: Chengwen Pei, Geng Wang, Yanli Zhang
  • Publication number: 20130032868
    Abstract: A trench capacitor and method of fabrication are disclosed. The SOI region is doped such that a selective isotropic etch used for trench widening does not cause appreciable pullback of the SOI region, and no spacers are needed in the upper portion of the trench.
    Type: Application
    Filed: August 4, 2011
    Publication date: February 7, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Chengwen Pei, Xi Li, Geng Wang
  • Patent number: 8354675
    Abstract: A substrate including a stack of a handle substrate, an optional lower insulator layer, a doped polycrystalline semiconductor layer, an upper insulator layer, and a top semiconductor layer is provided. A deep trench is formed through the top semiconductor layer, the upper insulator layer, and the doped polycrystalline semiconductor layer. Exposed vertical surfaces of the polycrystalline semiconductor layer are crystallographically etched to form random facets in the deep trench, thereby increasing the total exposed surface area of the polycrystalline semiconductor layer in the deep trench. A node dielectric and at least one conductive material are deposited to fill the trench and to form a buried strap portion, which constitute a capacitor of an eDRAM. Access transistors and other logic devices can be formed.
    Type: Grant
    Filed: May 7, 2010
    Date of Patent: January 15, 2013
    Assignee: International Business Machines Corporation
    Inventors: Oh-jung Kwon, Junedong Lee, Chengwen Pei, Geng Wang
  • Publication number: 20130009277
    Abstract: A structure and method for forming isolation and a buried plate for a trench capacitor is disclosed. Embodiments of the structure comprise an epitaxial layer serving as the buried plate, and a bounded deep trench isolation area serving to isolate one or more deep trench structures. Embodiments of the method comprise angular implanting of the deep trench isolation area to form a P region at the base of the deep trench isolation area that serves as an anti-punch through implant.
    Type: Application
    Filed: September 14, 2012
    Publication date: January 10, 2013
    Applicant: International Business Machines Corporation
    Inventors: Abhishek Dube, Subramanian S. Iyer, Babar Ali Khan, Oh-jung Kwon, Junedong Lee, Paul C. Parries, Chengwen Pei, Gerd Pfeiffer, Ravi M. Todi, Geng Wang
  • Publication number: 20120305998
    Abstract: In a vertical dynamic memory cell, monocrystalline semiconductor material of improved quality is provided for the channel of an access transistor by lateral epitaxial growth over an insulator material (which complements the capacitor dielectric in completely surrounding the storage node except at a contact connection structure, preferably of metal, from the access transistor to the storage node electrode) and etching away a region of the lateral epitaxial growth including a location where crystal lattice dislocations are most likely to occur; both of which features serve to reduce or avoid leakage of charge from the storage node. An isolation structure can be provided in the etched region such that space is provided for connections to various portions of a memory cell array.
    Type: Application
    Filed: May 31, 2011
    Publication date: December 6, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Roger A. Booth, JR., Kangguo Cheng, Joseph Ervin, David M. Fried, Byeong Kim, Chengwen Pei, Ravi M. Todi, Geng Wang
  • Publication number: 20120306049
    Abstract: A high-k dielectric metal trench capacitor and improved isolation and methods of manufacturing the same is provided. The method includes forming at least one deep trench in a substrate, and filling the deep trench with sacrificial fill material and a poly material. The method further includes continuing with CMOS processes, comprising forming at least one transistor and back end of line (BEOL) layer. The method further includes removing the sacrificial fill material from the deep trenches to expose sidewalls, and forming a capacitor plate on the exposed sidewalls of the deep trench. The method further includes lining the capacitor plate with a high-k dielectric material and filling remaining portions of the deep trench with a metal material, over the high-k dielectric material. The method further includes providing a passivation layer on the deep trench filled with the metal material and the high-k dielectric material.
    Type: Application
    Filed: June 6, 2011
    Publication date: December 6, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Roger A. Booth, JR., Kangguo Cheng, Joseph Ervin, Chengwen Pei, Ravi M. Todi, Geng Wang
  • Publication number: 20120286392
    Abstract: Dopants of a first conductivity type are implanted into a top portion of a semiconductor substrate having a doping of the first conductivity type to increase the dopant concentration in the top portion, which is a first-conductivity-type semiconductor layer. A semiconductor material layer having a doping of the second conductivity type, a buried insulator layer, and a top semiconductor layer are formed thereupon. Deep trenches having a narrow width have a bottom surface within the second-conductivity-type semiconductor layer, which functions as a buried plate. Deep trenches having a wider width are etched into the first-conductivity-type layer underneath, and can be used to form an isolation structure. The additional dopants in the first-conductivity-type semiconductor layer provide a counterdoping against downward diffusion of dopants of the second conductivity type to enhance electrical isolation.
    Type: Application
    Filed: May 12, 2011
    Publication date: November 15, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Chengwen Pei, Geng Wang
  • Publication number: 20120275208
    Abstract: An electrical fuse has an anode contact on a surface of a semiconductor substrate. The electrical fuse has a cathode contact on the surface of the semiconductor substrate spaced from the anode contact. The electrical fuse has a link within the substrate electrically interconnecting the anode contact and the cathode contact. The link comprises a semiconductor layer and a silicide layer. The silicide layer extends beyond the anode contact. An opposite end of the silicide layer extends beyond the cathode contact. A silicon germanium region is embedded in the semiconductor layer under the silicide layer, between the anode contact and the cathode contact.
    Type: Application
    Filed: April 27, 2011
    Publication date: November 1, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Yan Zun Li, Zhengwen Li, Chengwen Pei, Jian Yu
  • Patent number: 8299530
    Abstract: A semiconductor structure and a method of forming the same are provided in which the gate induced drain leakage is controlled by introducing a workfunction tuning species within selected portions of a pFET such that the gate/SD (source/drain) overlap area of the pFET is tailored towards flatband, yet not affecting the workfunction at the device channel region. The structure includes a semiconductor substrate having at least one patterned gate stack located within a pFET device region of the semiconductor substrate. The structure further includes extension regions located within the semiconductor substrate at a footprint of the at least one patterned gate stack. A channel region is also present and is located within the semiconductor substrate beneath the at least one patterned gate stack.
    Type: Grant
    Filed: March 4, 2010
    Date of Patent: October 30, 2012
    Assignee: International Business Machines Corporation
    Inventors: Chengwen Pei, Roger A. Booth, Jr., Kangguo Cheng, Joseph Ervin, Ravi M. Todi, Geng Wang
  • Patent number: 8299573
    Abstract: A trench and method of fabrication is disclosed. The trench shape is cylindrosymmetric, and is created by forming a dopant profile that is monotonically increasing in dopant concentration level as a function of depth into the substrate. A dopant sensitive etch is then performed, resulting in a trench shape providing increased surface area, yet having relatively smooth trench walls.
    Type: Grant
    Filed: June 18, 2010
    Date of Patent: October 30, 2012
    Assignee: International Business Machines Corporation
    Inventors: Chengwen Pei, Xi Li, Geng Wang
  • Patent number: 8298908
    Abstract: A structure and method for forming isolation and a buried plate for a trench capacitor is disclosed. Embodiments of the structure comprise an epitaxial layer serving as the buried plate, and a bounded deep trench isolation area serving to isolate one or more deep trench structures. Embodiments of the method comprise angular implanting of the deep trench isolation area to form a P region at the base of the deep trench isolation area that serves as an anti-punch through implant.
    Type: Grant
    Filed: February 11, 2010
    Date of Patent: October 30, 2012
    Assignee: International Business Machines Corporation
    Inventors: Abhishek Dube, Subramanian S. Iyer, Babar Ali Khan, Oh-jung Kwon, Junedong Lee, Paul C. Parries, Chengwen Pei, Gerd Pfeiffer, Ravi M. Todi, Geng Wang
  • Publication number: 20120261804
    Abstract: A diode structure, formed under a buried dielectric layer of a silicon on insulator (SOI), method of manufacturing the same and design structure thereof are provided. In an embodiment the p-n junction of the diode structure can be advantageously arranged in a vertical orientation. The cathode comprises an N+ epitaxial layer formed upon a P-type substrate. The anode comprises an active region of the P-substrate. Contacts to the cathode and anode are formed through the buried dielectric layer. Contact to the anode is accomplished via a deep trench filled with a conductive plug. The deep trench also provides electrical isolation for the cathode (as well as p-n junction). Advantageously, embodiments of the present invention may be formed during formation of other structures which also include trenches (for example, deep trench capacitors) in order to reduce process steps required to form the diode structure under the buried dielectric layer of the SOI substrate.
    Type: Application
    Filed: April 15, 2011
    Publication date: October 18, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Junjun Li, Zhengwen Li, Chengwen Pei, Jian Yu
  • Publication number: 20120208338
    Abstract: A method of forming a semiconductor structure, including forming a gate structure on a substrate; performing a first angled implantation on a first side of the gate structure to form a first doped region in the substrate, the first doped region partially extends within a channel of the gate structure and the gate structure blocks the first angled implantation from affecting the substrate on a second side of the gate structure; forming sidewall spacers on sidewalls of the gate; and forming a second doped region in the substrate on the second side of the gate, spaced apart from the channel.
    Type: Application
    Filed: March 22, 2012
    Publication date: August 16, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Roger A. BOOTH, JR., Paul CHANG, Kangguo CHENG, Chengwen PEI, William R. TONTI
  • Patent number: 8242549
    Abstract: A semiconductor fin having a doping of the first conductivity type and a semiconductor column are formed on a substrate. The semiconductor column and an adjoined end portion of the semiconductor fin are doped with dopants of a second conductivity type, which is the opposite of the first conductivity type. The doped semiconductor column constitutes an inner electrode of a capacitor. A dielectric layer and a conductive material layer are formed on the semiconductor fin and the semiconductor column. The conductive material layer is patterned to form an outer electrode for the capacitor and a gate electrode. A single-sided halo implantation may be performed. Source and drain regions are formed in the semiconductor fin to form an access transistor. The source region is electrically connected to the inner electrode of the capacitor. The access transistor and the capacitor collectively constitute a DRAM cell.
    Type: Grant
    Filed: February 5, 2010
    Date of Patent: August 14, 2012
    Assignee: International Business Machines Corporation
    Inventors: Roger A. Booth, Jr., Kangguo Cheng, Chengwen Pei, Geng Wang
  • Patent number: 8236632
    Abstract: An FET structure on a semiconductor substrate which includes forming recesses for a source and a drain of the gate structure on a semiconductor substrate, halo implanting regions through the bottom of the source and drain recesses, the halo implanted regions being underneath the gate stack, implanting junction butting at the bottom of the source and drain recesses, and filling the source and drain recesses with a doped epitaxial material. In exemplary embodiments, the semiconductor substrate is a semiconductor on insulator substrate including a semiconductor layer on a buried oxide layer. In exemplary embodiments, the junction butting and halo implanted regions are in contact with the buried oxide layer. In other exemplary embodiments, there is no junction butting. In exemplary embodiments, halo implants implanted to a lower part of the FET body underneath the gate structure provide higher doping level in lower part of the FET body to reduce body resistance, without interfering with FET threshold voltage.
    Type: Grant
    Filed: October 7, 2010
    Date of Patent: August 7, 2012
    Assignee: International Business Machines Corporation
    Inventors: David M. Fried, Jeffrey B. Johnson, Kevin McStay, Paul C. Parries, Chengwen Pei, Gan Wang, Geng Wang, Yanli Zhang
  • Patent number: 8232162
    Abstract: A method of forming a deep trench structure for a semiconductor device includes forming a mask layer over a semiconductor substrate. An opening in the mask layer is formed by patterning the mask layer, and a deep trench is formed in the semiconductor substrate using the patterned opening in the mask layer. A sacrificial fill material is formed over the mask layer and into the deep trench. A first portion of the sacrificial fill material is recessed from the deep trench and a first dopant implant forms a first doped region in the semiconductor substrate. A second portion of the sacrificial fill material is recessed from the deep trench and a second dopant implant forms a second doped region in the semiconductor substrate, wherein the second doped region is formed underneath the first doped region such that the second doped region and the first doped region are contiguous with each other.
    Type: Grant
    Filed: September 13, 2010
    Date of Patent: July 31, 2012
    Assignee: International Business Machines Corporation
    Inventors: Roger A. Booth, Jr., Kangguo Cheng, Joseph Ervin, Chengwen Pei, Ravi M. Todi, Geng Wang, Yanli Zhang
  • Publication number: 20120187460
    Abstract: A method of forming a semiconductor device is provided that includes forming a first metal semiconductor alloy on a semiconductor containing surface, forming a dielectric layer over the first metal semiconductor alloy, forming an opening in the dielectric layer to provide an exposed surface the first metal semiconductor alloy, and forming a second metal semiconductor alloy on the exposed surface of the first metal semiconductor alloy. In another embodiment, the method includes forming a gate structure on a channel region of a semiconductor substrate, forming a dielectric layer over at least a source region and a drain region, forming an opening in the dielectric layer to provide an exposed surface the semiconductor substrate, forming a first metal semiconductor alloy on the exposed surface of the semiconductor substrate, and forming a second metal semiconductor alloy on the first metal semiconductor alloy.
    Type: Application
    Filed: January 25, 2011
    Publication date: July 26, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Christian Lavoie, Zhengwen Li, Ahmet S. Ozcan, Filippos Papadatos, Chengwen Pei, Jian Yu
  • Publication number: 20120187490
    Abstract: A field effect transistor (FET) structure on a semiconductor substrate which includes a gate structure having a spacer on a semiconductor substrate; an extension implant underneath the gate structure; a recessed source and a recessed drain filled with a doped epitaxial material; halo implanted regions adjacent a bottom of the recessed source and drain and being underneath the gate stack. In an exemplary embodiment, there is implanted junction butting underneath the bottom of each of the recessed source and drain, the junction butting being separate and distinct from the halo implanted regions. In another exemplary embodiment, the doped epitaxial material is graded from a lower dopant concentration at a side of the recessed source and drain to a higher dopant concentration at a center of the recessed source and drain. In a further exemplary embodiment, the semiconductor substrate is a semiconductor on insulator substrate.
    Type: Application
    Filed: March 21, 2012
    Publication date: July 26, 2012
    Applicant: International Business Machines Corporation
    Inventors: David M. Fried, Jeffrey B. Johnson, Kevin McStay, Paul C. Parries, Chengwen Pei, Gan Wang, Geng Wang, Yanli Zhang