Patents by Inventor Chengwen Pei

Chengwen Pei has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120184073
    Abstract: A method of fabricating a memory device is provided that may begin with forming a layered gate stack atop a semiconductor substrate and patterning a metal electrode layer stopping on the high-k gate dielectric layer of the layered gate stack to provide a first metal gate electrode and a second metal gate electrode on the semiconductor substrate. In a next process sequence, at least one spacer is formed on the first metal gate electrode atop a portion of the high-k gate dielectric layer, wherein a remaining portion of the high-k gate dielectric is exposed. The remaining portion of the high-k gate dielectric layer is etched to provide a first high-k gate dielectric having a portion that extends beyond a sidewall of the first metal gate electrode and a second high-k gate dielectric having an edge that is aligned to a sidewall of the second metal gate electrode.
    Type: Application
    Filed: March 29, 2012
    Publication date: July 19, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Roger A. Booth, JR., Kangguo Cheng, Chandrasekharan Kothandaraman, Chengwen Pei
  • Publication number: 20120171827
    Abstract: A memory device is provided that in one embodiment includes a trench capacitor located in a semiconductor substrate including an outer electrode provided by the semiconductor substrate, an inner electrode provided by a conductive fill material, and a node dielectric layer located between the outer electrode and the inner electrode; and a semiconductor device positioned centrally over the trench capacitor. The semiconductor device includes a source region, a drain region, and a gate structure, in which the semiconductor device is formed on a semiconductor layer that is separated from the semiconductor substrate by a dielectric layer. A first contact is present extending from an upper surface of the semiconductor layer into electrical contact with the semiconductor substrate, and a second contact from the drain region of the semiconductor device in electrical contact to the conductive material within the at least one trench.
    Type: Application
    Filed: March 12, 2012
    Publication date: July 5, 2012
    Applicant: International Business Machines Corporation
    Inventors: Chengwen Pei, Kangguo Cheng, Herbert L. Ho, Subramanian S. Iyer, Byeong Y. Kim, Geng Wang, Huilong Zhu
  • Publication number: 20120139080
    Abstract: A semiconductor structure is provided that includes a material stack including an epitaxially grown semiconductor layer on a base semiconductor layer, a dielectric layer on the epitaxially grown semiconductor layer, and an upper semiconductor layer present on the dielectric layer. A capacitor is present extending from the upper semiconductor layer through the dielectric layer into contact with the epitaxially grown semiconductor layer. The capacitor includes a node dielectric present on the sidewalls of the trench and an upper electrode filling at least a portion of the trench. A substrate contact is present in a contact trench extending from the upper semiconductor layer through the dielectric layer and the epitaxially semiconductor layer to a doped region of the base semiconductor layer. A substrate contact is also provided that contacts the base semiconductor layer through the sidewall of a trench. Methods for forming the above-described structures are also provided.
    Type: Application
    Filed: December 3, 2010
    Publication date: June 7, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Geng Wang, Roger A. Booth, JR., Kangguo Cheng, Joseph Ervin, Chengwen Pei, Ravi M. Todi
  • Publication number: 20120139085
    Abstract: A semiconductor structure is provided that includes a semiconductor oxide layer having features. The semiconductor oxide layer having the features is located between an active semiconductor layer and a handle substrate. The semiconductor structure includes a planarized top surface of the active semiconductor layer such that the semiconductor oxide layer is beneath the planarized top surface. The features within the semiconductor oxide layer are mated with a surface of the active semiconductor layer.
    Type: Application
    Filed: December 2, 2010
    Publication date: June 7, 2012
    Applicant: International Business Machines Corporation
    Inventors: Ravi M. Todi, Joseph Ervin, Chengwen Pei, Geng Wang
  • Publication number: 20120139015
    Abstract: A method of forming a semiconductor device is provided that includes forming a gate structure on a channel portion of a semiconductor substrate, forming an interlevel dielectric layer over the gate structure, and forming a opening through the interlevel dielectric layer to an exposed surface of the semiconductor substrate containing at least one of the source region and the drain region. A metal semiconductor alloy contact is formed on the exposed surface of the semiconductor substrate. At least one dielectric sidewall spacer is formed on sidewalls of the opening. An interconnect is formed within the opening in direct contact with the metal semiconductor alloy contact.
    Type: Application
    Filed: December 7, 2010
    Publication date: June 7, 2012
    Applicants: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Jian Yu, Jeffrey B. Johnson, Zhengwen Li, Chengwen Pei, Michael Hargrove
  • Patent number: 8188528
    Abstract: A memory device is provided that in one embodiment includes a trench capacitor located in a semiconductor substrate including an outer electrode provided by the semiconductor substrate, an inner electrode provided by a conductive fill material, and a node dielectric layer located between the outer electrode and the inner electrode; and a semiconductor device positioned centrally over the trench capacitor. The semiconductor device includes a source region, a drain region, and a gate structure, in which the semiconductor device is formed on a semiconductor layer that is separated from the semiconductor substrate by a dielectric layer. A first contact is present extending from an upper surface of the semiconductor layer into electrical contact with the semiconductor substrate, and a second contact from the drain region of the semiconductor device in electrical contact to the conductive material within the at least one trench.
    Type: Grant
    Filed: May 7, 2009
    Date of Patent: May 29, 2012
    Assignee: International Buiness Machines Corporation
    Inventors: Chengwen Pei, Kangguo Cheng, Herbert L. Ho, Subramanian S. Iyer, Byeong Y. Kim, Geng Wang, Huilong Zhu
  • Publication number: 20120119310
    Abstract: A structure and method to fabricate a body contact on a transistor is disclosed. The method comprises forming a semiconductor structure with a transistor on a handle wafer. The structure is then inverted, and the handle wafer is removed. A silicided body contact is then formed on the transistor in the inverted position. The body contact may be connected to neighboring vias to connect the body contact to other structures or levels to form an integrated circuit.
    Type: Application
    Filed: November 11, 2010
    Publication date: May 17, 2012
    Applicant: International Business Machines Corporation
    Inventors: Chengwen Pei, Roger Allen Booth, JR., Kangguo Cheng, Joseph Ervin, Ravi M. Todi, Geng Wang
  • Publication number: 20120122315
    Abstract: A method includes forming patterned lines on a substrate having a predetermined pitch. The method further includes forming spacer sidewalls on sidewalls of the patterned lines. The method further includes forming material in a space between the spacer sidewalls of adjacent patterned lines. The method further includes forming another patterned line from the material by protecting the material in the space between the spacer sidewalls of adjacent patterned lines while removing the spacer sidewalls. The method further includes transferring a pattern of the patterned lines and the another patterned line to the substrate.
    Type: Application
    Filed: November 11, 2010
    Publication date: May 17, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: ROGER A. BOOTH, JR., Kangguo Cheng, Joseph Ervin, Chengwen Pei, Ravi M. Todi, Geng Wang
  • Publication number: 20120119302
    Abstract: An electrical structure is provided that includes a dielectric layer present on a semiconductor substrate and a via opening present through the dielectric layer. An interconnect is present within the via opening. A metal semiconductor alloy contact is present in the semiconductor substrate. The metal semiconductor alloy contact has a perimeter defined by a convex curvature relative to a centerline of the via opening. The endpoints for the convex curvature that defines the metal semiconductor alloy contact are aligned to an interface between a sidewall of the via opening, a sidewall of the interconnect and an upper surface of the semiconductor substrate.
    Type: Application
    Filed: November 11, 2010
    Publication date: May 17, 2012
    Applicant: International Business Machines Corporation
    Inventors: Chengwen Pei, Jeffrey B. Johnson, Zhengwen Li, Jian Yu
  • Publication number: 20120104469
    Abstract: In a replacement gate scheme, a continuous material layer is deposited on a bottom surface and a sidewall surface in a gate cavity. A vertical portion of the continuous material layer is removed to form a gate component of which a vertical portion does not extend to a top of the gate cavity. The gate component can be employed as a gate dielectric or a work function metal portion to form a gate structure that enhances performance of a replacement gate field effect transistor.
    Type: Application
    Filed: October 27, 2010
    Publication date: May 3, 2012
    Applicant: International Business Machines Corporation
    Inventors: Zhengwen Li, Dechao Guo, Randolph F. Knarr, Chengwen Pei, Gan Wang, Yanfeng Wang, Keith Kwong Hon Wong, Jian Yu, Jun Yuan
  • Publication number: 20120086077
    Abstract: An FET structure on a semiconductor substrate which includes forming recesses for a source and a drain of the gate structure on a semiconductor substrate, halo implanting regions through the bottom of the source and drain recesses, the halo implanted regions being underneath the gate stack, implanting junction butting at the bottom of the source and drain recesses, and filling the source and drain recesses with a doped epitaxial material. In exemplary embodiments, the semiconductor substrate is a semiconductor on insulator substrate including a semiconductor layer on a buried oxide layer. In exemplary embodiments, the junction butting and halo implanted regions are in contact with the buried oxide layer. In other exemplary embodiments, there is no junction butting. In exemplary embodiments, halo implants implanted to a lower part of the FET body underneath the gate structure provide higher doping level in lower part of the FET body to reduce body resistance, without interfering with FET threshold voltage.
    Type: Application
    Filed: October 7, 2010
    Publication date: April 12, 2012
    Applicant: International Business Machines Corporation
    Inventors: DAVID M FRIED, Jeffrey B. Johnson, Kevin McStay, Paul C. Parries, Chengwen Pei, Gan Wang, Geng Wang, Yanli Zhang
  • Publication number: 20120068237
    Abstract: After forming a planarization dielectric layer in a replacement gate integration scheme, disposable gate structures are removed and a stack of a gate dielectric layer and a gate electrode layer is formed within recessed gate regions. Each gate electrode structure is then recessed below a topmost surface of the gate dielectric layer. A dielectric metal oxide portion is formed above each gate electrode by planarization. The dielectric metal oxide portions and gate spacers are employed as a self-aligning etch mask in combination with a patterned photoresist to expose and metalize semiconductor surfaces of a source region and an inner electrode in each embedded memory cell structure. The metalized semiconductor portions form metal semiconductor alloy straps that provide a conductive path between the inner electrode of a capacitor and the source of an access transistor.
    Type: Application
    Filed: September 20, 2010
    Publication date: March 22, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Roger A. Booth, JR., Kangguo Cheng, Joseph Ervin, Chengwen Pei, Geng Wang
  • Patent number: 8138068
    Abstract: A method of forming nanopore is provided that includes forming a first structure on a substrate, and forming a second structure overlying the first structure. An intersecting portion of the first and the second structures is etched to provide an opening of nanopore dimensions. The substrate may be etched with a backside substrate etch to expose the nanopore opening.
    Type: Grant
    Filed: August 11, 2010
    Date of Patent: March 20, 2012
    Assignees: International Business Machines Corporation, Global Foundries
    Inventors: Zhengwen Li, Chengwen Pei, Frank Yang
  • Publication number: 20120064694
    Abstract: A method of forming a deep trench structure for a semiconductor device includes forming a mask layer over a semiconductor substrate. An opening in the mask layer is formed by patterning the mask layer, and a deep trench is formed in the semiconductor substrate using the patterned opening in the mask layer. A sacrificial fill material is formed over the mask layer and into the deep trench. A first portion of the sacrificial fill material is recessed from the deep trench and a first dopant implant forms a first doped region in the semiconductor substrate. A second portion of the sacrificial fill material is recessed from the deep trench and a second dopant implant forms a second doped region in the semiconductor substrate, wherein the second doped region is formed underneath the first doped region such that the second doped region and the first doped region are contiguous with each other.
    Type: Application
    Filed: September 13, 2010
    Publication date: March 15, 2012
    Applicant: International Business Machines Corporation
    Inventors: Roger A. BOOTH, JR., Kangguo CHENG, Joseph ERVIN, Chengwen PEI, Ravi M. TODI, Geng WANG, Yanli ZHANG
  • Publication number: 20120040512
    Abstract: A method of forming nanopore is provided that includes forming a first structure on a substrate, and forming a second structure overlying the first structure. An intersecting portion of the first and the second structures is etched to provide an opening of nanopore dimensions. The substrate may be etched with a backside substrate etch to expose the nanopore opening.
    Type: Application
    Filed: August 11, 2010
    Publication date: February 16, 2012
    Applicants: GLOBALFOUNDRIES, INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Zhengwen Li, Chengwen Pei, Frank Yang
  • Publication number: 20120021204
    Abstract: A method of fabricating a material having nanoscale pores is provided. In one embodiment, the method of fabricating a material having nanoscale pores may include providing a single crystal semiconductor. The single crystal semiconductor layer is then patterned to provide an array of exposed portions of the single crystal semiconductor layer having a width that is equal to the minimum lithographic dimension. The array of exposed portion of the single crystal semiconductor layer is then etched using an etch chemistry having a selectivity for a first crystal plane to a second crystal plane of 100% or greater. The etch process forms single or an array of trapezoid shaped pores, each of the trapezoid shaped pores having a base that with a second width that is less than the minimum lithographic dimension.
    Type: Application
    Filed: July 26, 2010
    Publication date: January 26, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Chengwen Pei, Zhengwen Li
  • Publication number: 20110316061
    Abstract: Semiconductor structures and methods to control bottom corner threshold in a silicon-on-insulator (SOI) device. A method includes doping a corner region of a semiconductor-on-insulator (SOI) island. The doping includes tailoring a localized doping of the corner region to reduce capacitive coupling of the SOI island with an adjacent structure.
    Type: Application
    Filed: June 24, 2010
    Publication date: December 29, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Joseph ERVIN, Jeffrey B. JOHNSON, Kevin MCSTAY, Paul C. PARRIES, Chengwen PEI, Geng WANG, Yanli ZHANG
  • Publication number: 20110309474
    Abstract: A trench and method of fabrication is disclosed. The trench shape is cylindrosymmetric, and is created by forming a dopant profile that is monotonically increasing in dopant concentration level as a function of depth into the substrate. A dopant sensitive etch is then performed, resulting in a trench shape providing increased surface area, yet having relatively smooth trench walls.
    Type: Application
    Filed: June 18, 2010
    Publication date: December 22, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Chengwen Pei, Xi Li, Geng Wang
  • Publication number: 20110291166
    Abstract: An integrated circuit having finFETs and a metal-insulator-metal (MIM) fin capacitor and methods of manufacture are disclosed. A method includes forming a first finFET comprising a first dielectric and a first conductor; forming a second finFET comprising a second dielectric and a second conductor; and forming a fin capacitor comprising the first conductor, the second dielectric, and the second conductor.
    Type: Application
    Filed: May 27, 2010
    Publication date: December 1, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Roger A. Booth, JR., Kangguo Cheng, Toshiharu Furukawa, Chengwen Pei
  • Publication number: 20110291169
    Abstract: A structural alternative to retro doping to reduce transistor leakage is provided by providing a liner in a trench, undercutting a conduction channel region in an active semiconductor layer, etching a side, corner and/or bottom of the conduction channel where the undercut exposes semiconductor material in the active layer and replacing the removed portion of the conduction channel with insulator. This shaping of the conduction channel increases the distance to adjacent circuit elements which, if charged, could otherwise induce a voltage and cause a change in back-channel threshold in regions of the conduction channel and narrows and reduces cross-sectional area of the channel where the conduction in the channel is not well-controlled; both of which effects significantly reduce leakage of the transistor.
    Type: Application
    Filed: June 1, 2010
    Publication date: December 1, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Joseph Ervin, Jeffrey B. Johnson, Paul C. Parries, Chengwen Pei, Geng Wang, Yanli Zhang