Patents by Inventor Cheong Min Hong

Cheong Min Hong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9437500
    Abstract: A semiconductor device and a method for making the semiconductor device are provided. The semiconductor device includes a non-volatile memory cell having a gate dielectric and formed in a non-volatile memory well region; a first transistor type formed using a first gate oxide and formed in a first transistor well region; a second transistor type formed using a second gate oxide and formed in a second transistor well region; and a third transistor type formed using a third gate oxide and formed in a third transistor well region. The gate dielectric and the first and second gate oxides are formed from the same oxide stack. The first, second, and third transistor types include extension implants formed using a first implant dopant, and the non-volatile memory cell includes extension implants formed using a second implant dopant, where the first and second implant dopants are different.
    Type: Grant
    Filed: March 13, 2015
    Date of Patent: September 6, 2016
    Assignee: FREESCALE SEMICONDUCTOR, INC.
    Inventor: Cheong Min Hong
  • Publication number: 20160218112
    Abstract: A dielectric layer is formed over the substrate in the capacitor region and the memory region and a select gate layer is formed over the dielectric layer. A select gate is formed over the memory region and a plurality of lines of electrodes over the capacitor region from the select gate layer. A charge storage layer is formed over the capacitor region and the memory region including over the select gate and the plurality of lines. A control gate layer is formed over the charge storage layer over the capacitor region and over the memory region. The control gate layer is patterned to form a control gate of a memory cell over the memory region and a first electrode of a capacitor over the capacitor region. The plurality of lines are connected to the capacitor region to form a second electrode of the capacitor.
    Type: Application
    Filed: January 23, 2015
    Publication date: July 28, 2016
    Inventors: SATOSHI SEKINE, CHEONG MIN HONG
  • Patent number: 9397201
    Abstract: A method of forming a flash memory cell includes forming a first hard mask and a second hard mask on a substrate. A select gate is formed as a spacer around the first hard mask. A charge storage layer is formed over the first and second hard masks and the select gate. A control gate is formed as a spacer around the second hard mask. A recess in the control gate is filled with a dielectric material. The recess is formed between a curved sidewall of the control gate and a sidewall of the charge storage layer directly adjacent the curved sidewall of the control gate.
    Type: Grant
    Filed: November 17, 2015
    Date of Patent: July 19, 2016
    Assignee: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Jacob T. Williams, Cheong Min Hong, Sung-Taeg Kang, David G. Kolar, Jane A. Yater
  • Patent number: 9397176
    Abstract: A first doped region extends from a top surface of a substrate to a first depth. Implanting into the first doped region forms a second doped region of a second conductivity type. The second doped region extends from the top surface to a second depth that is less than the first depth. A split gate NVM structure has select and control gates over the second doped region. A drain region of the second conductivity type is formed adjacent to the select gate. A source region of the second conductivity type is formed adjacent to the control gate. Angled implants into the second doped region form a third doped region of the first conductivity type under a portion of the select gate and a fourth doped region of the first conductivity type under a portion of the control gate. The drain and source regions adjoin the third and fourth regions.
    Type: Grant
    Filed: July 30, 2014
    Date of Patent: July 19, 2016
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Cheong Min Hong, Konstantin V. Loiko, Jane A. Yater
  • Publication number: 20160172199
    Abstract: A charge-storing device includes a charge-storing layer including nanocrystals. The nanocrystals are formed by a deposition technique incorporating deuterated hydrides. The deuterated hydride can be used to form an amorphous semiconductor material that is annealed to form nanoparticles to be incorporated into the charge-storing layer.
    Type: Application
    Filed: December 12, 2014
    Publication date: June 16, 2016
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Cheong Min Hong, Euhngi Lee
  • Patent number: 9368499
    Abstract: A method and apparatus are described for integrating high voltage (HV) transistor devices and medium voltage or dual gate oxide (DGO) transistor devices with low voltage (LV) core transistor devices on a single substrate, where each high voltage transistor device (160) includes a metal gate (124), an upper high-k gate dielectric layer (120), a middle gate dielectric layer (114) formed with a relatively lower high-k dual gate oxide layer, and a lower high voltage gate dielectric stack (108, 110) formed with one or more low-k gate oxide layers (22), where each DGO transistor device (161) includes a metal gate (124), an upper high-k gate dielectric layer (120), and a middle gate dielectric layer (114) formed with a relatively lower high-k dual gate oxide layer, and where each core transistor device (162) includes a metal gate (124), an upper high-k gate dielectric layer (120), and a base oxide layer (118) formed with one or more low-k gate oxide layers.
    Type: Grant
    Filed: September 2, 2015
    Date of Patent: June 14, 2016
    Assignee: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Cheong Min Hong, Asanga H. Perera, Sung-Taeg Kang
  • Patent number: 9349453
    Abstract: The present disclosure provides for semiconductor structures and methods for making semiconductor structures. In one embodiment, isolation regions are formed in a substrate, and wells are formed between the isolation regions. The wells include a first low voltage well and a second low voltage well in a logic region of the substrate, and a memory array well in an NVM region of the substrate. A first layer of oxide is formed over the first low voltage well and the memory array well, and a second layer of oxide is formed over the second low voltage well, the second layer being thinner than the first layer. Gates are formed over the wells, including a first gate over the first low voltage well, a second gate over the second low voltage well, and a memory cell gate over the memory array well. Source/drain extension regions are formed around the gates.
    Type: Grant
    Filed: August 27, 2014
    Date of Patent: May 24, 2016
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Cheong Min Hong, Tahmina Akhter, Gilles J. Muller
  • Patent number: 9331092
    Abstract: Methods and related structures are disclosed for forming contact landing regions in split-gate NVM (non-volatile memory) systems. A dummy select gate structure is formed while also forming select gates for split-gate NVM cells. A control gate layer is formed over the select gates and the dummy select gate structure, as well as an intervening charge storage layer. The control gate material will fill in gaps between the select gate material and the dummy select gate material. A non-patterned spacer etch is then used to etch the control gate layer to form a contact landing region associated with the dummy select gate structure while also forming spacer control gates for the split-gate NVM cells. The disclosed embodiments provide improved (e.g., more planar) contact landing regions without requiring additional processing steps and without increasing the pitch of the resulting NVM cell array.
    Type: Grant
    Filed: May 7, 2015
    Date of Patent: May 3, 2016
    Assignee: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Jane A. Yater, Cheong Min Hong, Sung-Taeg Kang
  • Publication number: 20160071960
    Abstract: A method of forming a flash memory cell includes forming a first hard mask and a second hard mask on a substrate. A select gate is formed as a spacer around the first hard mask. A charge storage layer is formed over the first and second hard masks and the select gate. A control gate is formed as a spacer around the second hard mask. A recess in the control gate is filled with a dielectric material. The recess is formed between a curved sidewall of the control gate and a sidewall of the charge storage layer directly adjacent the curved sidewall of the control gate.
    Type: Application
    Filed: November 17, 2015
    Publication date: March 10, 2016
    Inventors: JACOB T. WILLIAMS, CHEONG MIN HONG, SUNG-TAEG KANG, DAVID G. KOLAR, JANE A. YATER
  • Publication number: 20160064082
    Abstract: The present disclosure provides for semiconductor structures and methods for making semiconductor structures. In one embodiment, isolation regions are formed in a substrate, and wells are formed between the isolation regions. The wells include a first low voltage well and a second low voltage well in a logic region of the substrate, and a memory array well in an NVM region of the substrate. A first layer of oxide is formed over the first low voltage well and the memory array well, and a second layer of oxide is formed over the second low voltage well, the second layer being thinner than the first layer. Gates are formed over the wells, including a first gate over the first low voltage well, a second gate over the second low voltage well, and a memory cell gate over the memory array well. Source/drain extension regions are formed around the gates.
    Type: Application
    Filed: August 27, 2014
    Publication date: March 3, 2016
    Inventors: CHEONG MIN HONG, Tahmina Akhter, Gilles J. Muller
  • Patent number: 9275864
    Abstract: A process integration is disclosed for fabricating non-volatile memory (NVM) cells (105-109, 113-115) on a first flash cell substrate area (111) which are encapsulated in one or more planar dielectric layers (116) prior to forming an elevated substrate (117) on a second CMOS transistor area (112) on which high-k metal gate electrodes (119-120, 122-126, 132, 134) are formed using a gate-last HKMG CMOS process flow without interfering with the operation or reliability of the NVM cells.
    Type: Grant
    Filed: August 22, 2013
    Date of Patent: March 1, 2016
    Assignee: FREESCALE SEMICONDUCTOR,INC.
    Inventors: Asanga H Perera, Sung-Taeg Kang, Jane A Yater, Cheong Min Hong
  • Publication number: 20160035848
    Abstract: A first doped region extends from a top surface of a substrate to a first depth. Implanting into the first doped region forms a second doped region of a second conductivity type. The second doped region extends from the top surface to a second depth that is less than the first depth. A split gate NVM structure has select and control gates over the second doped region. A drain region of the second conductivity type is formed adjacent to the select gate. A source region of the second conductivity type is formed adjacent to the control gate. Angled implants into the second doped region form a third doped region of the first conductivity type under a portion of the select gate and a fourth doped region of the first conductivity type under a portion of the control gate. The drain and source regions adjoin the third and fourth regions.
    Type: Application
    Filed: July 30, 2014
    Publication date: February 4, 2016
    Inventors: Cheong Min Hong, Konstantin V. Loiko, Jane A. Yater
  • Patent number: 9252246
    Abstract: A method of making a semiconductor structure includes forming a select gate and a charge storage layer in an NVM region. A control gate is formed by depositing a conformal layer followed by an etch back. A patterned etch results in leaving a portion of the charge storage layer over the select gate and under the control gate and to remove the charge storage layer from the logic region. A logic gate structure formed in a logic region has a metal work function surrounded by an insulating layer.
    Type: Grant
    Filed: August 21, 2013
    Date of Patent: February 2, 2016
    Assignee: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Asanga H. Perera, Cheong Min Hong, Sung-Taeg Kang, Jane A. Yater
  • Publication number: 20150380408
    Abstract: A method and apparatus are described for integrating high voltage (HV) transistor devices and medium voltage or dual gate oxide (DGO) transistor devices with low voltage (LV) core transistor devices on a single substrate, where each high voltage transistor device (160) includes a metal gate (124). an upper high-k gate dielectric layer (120), a middle gate dielectric layer (114) formed with a relatively lower high-k dual gate oxide layer, and a lower high voltage gate dielectric stack (108, 110) formed with one or more low-k gate oxide layers (22), where each DGO transistor device (161) includes a metal gate (124), an upper high-k gate dielectric layer (120), and a middle gate dielectric layer (114) formed with a relatively lower high-k dual gate oxide layer, and where each core transistor device (162) includes a metal gate (124), an upper high-k gate dielectric layer (120), and a base oxide layer (118) formed with one or more low-k gate oxide layers.
    Type: Application
    Filed: September 2, 2015
    Publication date: December 31, 2015
    Inventors: Cheong Min Hong, Asanga H. Perera, Sung-Taeg Kang
  • Patent number: 9219167
    Abstract: A method of forming a flash memory cell includes forming a first hard mask and a second hard mask on a substrate. A select gate is formed as a spacer around the first hard mask. A charge storage layer is formed over the first and second hard masks and the select gate. A control gate is formed as a spacer around the second hard mask. A recess in the control gate is filled with a dielectric material. The recess is formed between a curved sidewall of the control gate and a sidewall of the charge storage layer directly adjacent the curved sidewall of the control gate.
    Type: Grant
    Filed: December 19, 2013
    Date of Patent: December 22, 2015
    Assignee: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Jacob T. Williams, Cheong Min Hong, Sung-Taeg Kang, David G. Kolar, Jane A. Yater
  • Patent number: 9142566
    Abstract: A method and apparatus are described for integrating high voltage (HV) transistor devices and medium voltage or dual gate oxide (DGO) transistor devices with low voltage (LV) core transistor devices on a single substrate, where each high voltage transistor device (160) includes a metal gate (124), an upper high-k gate dielectric layer (120), a middle gate dielectric layer (114) formed with a relatively lower high-k dual gate oxide layer, and a lower high voltage gate dielectric stack (108, 110) formed with one or more low-k gate oxide layers (22), where each DGO transistor device (161) includes a metal gate (124), an upper high-k gate dielectric layer (120), and a middle gate dielectric layer (114) formed with a relatively lower high-k dual gate oxide layer, and where each core transistor device (162) includes a metal gate (124), an upper high-k gate dielectric layer (120), and a base oxide layer (118) formed with one or more low-k gate oxide layers.
    Type: Grant
    Filed: September 9, 2013
    Date of Patent: September 22, 2015
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Cheong Min Hong, Asanga H. Perera, Sung-Taeg Kang
  • Patent number: 9129855
    Abstract: A method of making a semiconductor structure includes forming a select gate over a substrate in an NVM portion and a first protection layer over a logic portion. A control gate and a storage layer are formed over the substrate in the NVM portion, wherein the control and select gates have coplanar top surfaces. The charge storage layer is under the control gate, along adjacent sidewalls of the select gate and control gate, and is partially over the top surface of the select gate. A second protection layer is formed over the NVM portion and the logic portion. The second protection layer and the first protection layer are removed from the logic portion leaving a portion of the second protection layer over the control gate and the select gate. A gate structure is formed over the logic portion comprising a high k dielectric and a metal gate.
    Type: Grant
    Filed: September 30, 2013
    Date of Patent: September 8, 2015
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Asanga H. Perera, Cheong Min Hong, Sung-Taeg Kang, Jane A. Yater
  • Patent number: 9129996
    Abstract: A method of making a semiconductor device includes depositing a layer of polysilicon in a non-volatile memory (NVM) region and a logic region of a substrate. The layer of polysilicon is patterned into a gate in the NVM region while the layer of polysilicon remains in the logic region. A memory cell is formed including the gate in the NVM region while the layer of polysilicon remains in the logic region. The layer of polysilicon in the logic region is removed and the substrate is implanted to form a well region in the logic region after the memory cell is formed. A layer of gate material is deposited in the logic region. The layer of gate material is patterned into a logic gate in the logic region.
    Type: Grant
    Filed: September 10, 2013
    Date of Patent: September 8, 2015
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Frank K. Baker, Jr., Cheong Min Hong
  • Patent number: 9118008
    Abstract: A resistive random access memory (ReRAM) cell comprising a first conductive electrode and a dielectric storage material layer over the first conductive electrode. The dielectric storage material layer is conducive to the formation of conductive filaments during the application of a filament forming voltage to the cell. The cell includes a second conductive electrode over the dielectric storage material layer and a layer of conductive nanoclusters (911, 1211) including a plurality of nanoclusters in contact with the dielectric storage material layer and in contact with the first conductive electrode or the second conductive electrode.
    Type: Grant
    Filed: June 11, 2014
    Date of Patent: August 25, 2015
    Assignee: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Feng Zhou, Frank K. Baker, Jr., Ko-Min Chang, Cheong Min Hong
  • Patent number: 9114980
    Abstract: A resistive random access memory (ReRAM) cell, comprising a first conductive electrode and a dielectric storage material layer over the first conductive electrode. The dielectric storage material layer is conducive to the formation of conductive filaments during the application of a filament forming voltage to the cell. The cell includes a second conductive electrode over the dielectric storage material layer and an interface region comprising a plurality of interspersed field focusing features that are not photo-lithographically defined. The interface region is located between the first conductive electrode and the dielectric storage material layer or between the dielectric storage material layer and the second conductive electrode.
    Type: Grant
    Filed: June 1, 2012
    Date of Patent: August 25, 2015
    Assignee: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Feng Zhou, Frank K. Baker, Jr., Ko-Min Chang, Cheong Min Hong