Patents by Inventor CHEW-YUEN YOUNG

CHEW-YUEN YOUNG has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10276499
    Abstract: In some embodiments, the present disclosure relates to an integrated chip having a lower power rail continuously extending over a plurality of gate structures. A first set of connection pins straddle a first edge of the lower power rail, and a second set of connection pins straddle a second edge of the lower power rail, which is opposite the first edge. The first set of connection pins and the second set of connection pins are electrically coupled to the lower power rail. An upper power rail is over the lower power rail and is electrically coupled to the first set of connection pins and the second set of connection pins. The first set of connection pins are arranged at a first pitch and the second set of connection pins arranged with respect to the first set of connection pins at a second pitch less than the first pitch.
    Type: Grant
    Filed: September 25, 2017
    Date of Patent: April 30, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Shih-Wei Peng, Chih-Ming Lai, Chun-Kuang Chen, Chih-Liang Chen, Charles Chew-Yuen Young, Jiann-Tyng Tzeng, Kam-Tou Sio, Ru-Gun Liu, Yung-Sung Yen
  • Publication number: 20190122987
    Abstract: The present disclosure, in some embodiments, relates to an integrated chip. The integrated chip includes a source region and a drain region separated by a channel region within a substrate. A middle-end-of-the-line (MEOL) structure is over the drain region and a gate structure is over the channel region. The MEOL structure is vertically disposed between the drain region and a plane extending along an upper surface of the gate structure. A first interconnect wire is connected to the MEOL structure by a first conductive contact that is directly over the drain region and that extends between the first interconnect wire and the MEOL structure. A conductive strap is located over the first interconnect wire. The conductive strap connects the first interconnect wire to a power rail having a larger width than the first interconnect wire.
    Type: Application
    Filed: December 11, 2018
    Publication date: April 25, 2019
    Inventors: Chih-Liang Chen, Chih-Ming Lai, Charles Chew-Yuen Young, Chi-Yeh Yu, Jiann-Tyng Tzeng, Kam-Tou Sio, Pin-Dai Sue, Ru-Gun Liu, Shih-Wei Peng, Wen-Hao Chen, Yung-Sung Yen, Chun-Kuang Chen
  • Publication number: 20190123036
    Abstract: Gate structures extending continuously above a first active region, a second active region and a non-active region of a substrate of a semiconductor structure are arranged. At least one local interconnect over the non-active region and between two of the gate structures is selectively arranged, to couple at least one of contacts that is arranged above the first active region to at least one of the contacts that is arranged above the second active region.
    Type: Application
    Filed: December 11, 2018
    Publication date: April 25, 2019
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Charles Chew-Yuen YOUNG, Chih-Liang CHEN, Chih-Ming LAI, Jiann-Tyng TZENG, Shun-Li CHEN, Kam-Tou SIO, Shih-Wei PENG, Chun-Kuang CHEN, Ru-Gun LIU
  • Publication number: 20190096809
    Abstract: The present disclosure relates to a semiconductor device and a manufacturing method, and more particularly to forming via rail and deep via structures to reduce parasitic capacitances in standard cell structures. Via rail structures are formed in a level different from the conductive lines. The via rail structure can reduce the number of conductive lines and provide larger separations between conductive lines that are on the same interconnect level and thus reduce parasitic capacitance between conductive lines.
    Type: Application
    Filed: March 28, 2018
    Publication date: March 28, 2019
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Wei-Cheng Lin, Cheng-Chi Chuang, Chih-Liang Chen, Charles Chew-Yuen Young, Hui-Ting Yang, Wayne Lai
  • Publication number: 20190096909
    Abstract: The present disclosure describes an apparatus with a local interconnect structure. The apparatus can include a first transistor, a second transistor, a first interconnect structure, a second interconnect structure, and a third interconnect structure. The local interconnect structure can be coupled to gate terminals of the first and second transistors and routed at a same interconnect level as reference metal lines coupled to ground and a power supply voltage. The first interconnect structure can be coupled to a source/drain terminal of the first transistor and routed above the local interconnect structure. The second interconnect structure can be coupled to a source/drain terminal of the second transistor and routed above the local interconnect structure. The third interconnect structure can be routed above the local interconnect structure and at a same interconnect level as the first and second interconnect structures.
    Type: Application
    Filed: June 29, 2018
    Publication date: March 28, 2019
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chih-Liang Chen, Cheng-Chi CHUANG, Chih-Ming LAI, Chia-Tien WU, Charles Chew-Yuen YOUNG, Hui-Ting YANG, Jiann-Tyng TZENG, Ru-Gun LIU, Wei-Cheng LIN, Lei-Chun CHOU, Wei-An LAI
  • Publication number: 20190065658
    Abstract: A method of forming an integrated circuit includes generating, by a processor, a layout design of the integrated circuit based on a set of design rules and manufacturing the integrated circuit based on the layout design. The integrated circuit has a first gate. Generating the layout design includes generating a set of gate layout patterns, generating a cut feature layout pattern and generating a first via layout pattern. The cut feature layout pattern extends in a first direction, is located on the first layout level and overlaps at least a first gate layout pattern. The set of gate layout patterns extends in a second direction and is located on a first layout level. The first via layout pattern is over the first gate layout pattern, and is separated in the second direction from the cut feature layout pattern by a first distance. The first distance satisfies a first design rule.
    Type: Application
    Filed: April 30, 2018
    Publication date: February 28, 2019
    Inventors: Shih-Wei PENG, Chih-Liang Chen, Charles Chew-Yuen Young, Hui-Zhong Zhuang, Jiann-Tyng Tzeng, Shun Li Chen, Wei-Cheng Lin
  • Publication number: 20190051595
    Abstract: Examples of an integrated circuit a having an advanced two-dimensional (2D) metal connection with metal cut and methods of fabricating the same are provided. An example method for fabricating a conductive interconnection layer of an integrated circuit may include: patterning a conductive connector portion on the conductive interconnection layer of the integrated circuit using extreme ultraviolet (EUV) lithography, wherein the conductive connector portion is patterned to extend across multiple semiconductor structures in a different layer of the integrated circuit; and cutting the conductive connector portion into a plurality of conductive connector sections, wherein the conductive connector portion is cut by removing conductive material from the metal connector portion at one or more locations between the semiconductor structures.
    Type: Application
    Filed: October 19, 2018
    Publication date: February 14, 2019
    Inventors: Chih-Liang Chen, Cheng-Chi Chuang, Chih-Ming Lai, Chia-Tien Wu, Charles Chew-Yuen Young, Hui-Ting Yang, Jiann-Tyng Tzeng, Kam-Tou Sio, Ru-Gun Liu, Shun Li Chen, Shih-Wei Peng, Tien-Lu Lin
  • Patent number: 10204857
    Abstract: A method is disclosed that includes disposing a first conductive metal segment; disposing a second conductive metal segment over an active area; disposing a local conductive segment to couple the first conductive metal segment and the second conductive metal segment; disposing a first conductive via on the first conductive metal segment; and disposing a first conductive line coupled to the first conductive metal segment through the first conductive via.
    Type: Grant
    Filed: November 17, 2017
    Date of Patent: February 12, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Meng-Hung Shen, Chih-Liang Chen, Charles Chew-Yuen Young, Jiann-Tyng Tzeng, Kam-Tou Sio, Wei-Cheng Lin
  • Publication number: 20190043759
    Abstract: The present disclosure relates to an integrated chip. In some embodiments, the integrated chip has a first plurality of source and drain regions disposed within a substrate along a first line extending in a first direction. A plurality of gate structures are arranged over the substrate at a substantially regular pitch, and a plurality of middle-of-the-line (MOL) structures are respectively interleaved between adjacent ones of the plurality of gate structures. The plurality of MOL structures include MOL active structures that are electrically coupled to an overlying conductive interconnect and MOL dummy structures that are not electrically coupled to any overlying conductive interconnect. The plurality of MOL structures are arranged over the first plurality of source and drain regions at an irregular pitch that is larger than the substantially regular pitch.
    Type: Application
    Filed: October 8, 2018
    Publication date: February 7, 2019
    Inventors: Hui-Ting Yang, Chih-Ming Lai, Chun-Kuang Chen, Chih-Liang Chen, Charles Chew-Yuen Young, Jiann-Tyng Tzeng, Kam-Tou Sio, Meng-Hung Shen, Ru-Gun Liu, Wei-Cheng Lin
  • Publication number: 20190019797
    Abstract: A semiconductor device including multiple fins. At least a first set of fins among the multiple fins is substantially parallel. At least a second set of fins among the multiple fins is substantially collinear. For any given first and second fins of the multiple fins having corresponding first and second fin-thicknesses, the second fin-thickness is less than plus or minus about 50% of the first fin-thickness.
    Type: Application
    Filed: September 10, 2018
    Publication date: January 17, 2019
    Inventors: Chih-Liang CHEN, Chih-Ming LAI, Charles Chew-Yuen YOUNG, Chin-Yuan TSENG, Jiann-Tyng TZENG, Kam-Tou SIO, Ru-Gun LIU, Wei-Liang LIN, L. C. CHOU
  • Patent number: 10177133
    Abstract: A method for forming a semiconductor structure includes following operations. Gate structures are arranged above a first active region, a second active region and a non-active region of a substrate of a semiconductor structure. The first and second active regions are spaced apart by the non-active region. Contacts are arranged above the first and second active regions. At least one gate via is arranged above the first active region or the second active region. The at least one gate via is electrically coupled with the gate structures. At least one local interconnect is selectively arranged over the non-active region, to couple at least one of the contacts above the first active region to at least one of the contacts above the second active region.
    Type: Grant
    Filed: May 19, 2016
    Date of Patent: January 8, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Charles Chew-Yuen Young, Chih-Liang Chen, Chih-Ming Lai, Jiann-Tyng Tzeng, Shun-Li Chen, Kam-Tou Sio, Shih-Wei Peng, Chun-Kuang Chen, Ru-Gun Liu
  • Publication number: 20190005181
    Abstract: A method for calculating cell edge leakage in a semiconductor device comprising performing a device leakage simulation to obtain leakage information for different cell edge conditions and providing attributes associated with cell edges in the semiconductor device. The method further comprises performing an analysis to identify cell abutment cases present in the semiconductor device and calculating the leakage of the semiconductor device based at least in part on probabilities associated with the cell abutment cases and the simulated leakage values obtained from the device leakage simulation.
    Type: Application
    Filed: June 30, 2017
    Publication date: January 3, 2019
    Inventors: Shih-Wei Peng, Charles Chew-Yuen Young, Jiann-Tyng Tzeng, Kam-Tou Sio
  • Patent number: 10169515
    Abstract: A layout modification method is performed by at least one processor. The layout modification method includes: analyzing, by the at least one processor, allocation of a plurality of specific layout segments of a circuit cell layout to determine a first specific layout segment and a second specific layout segment from the plurality of specific layout segments; determining, by the at least one processor, if the first specific layout segment and the second specific layout segment are coupled to a first signal level; and merging, by the at least one processor, the first specific layout segment and the second specific layout segment into a first merged layout segment when the first specific layout segment and the second specific layout segment are coupled to the first signal level.
    Type: Grant
    Filed: November 16, 2015
    Date of Patent: January 1, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Kam-Tou Sio, Tsung-Yao Wen, Chih-Ming Lai, Hui-Ting Yang, Jui-Yao Lai, Chih-Liang Chen, Chun-Kuang Chen, Ru-Gun Liu, Yen-Ming Chen, Chew-Yuen Young
  • Patent number: 10170422
    Abstract: The present disclosure, in some embodiments, relates to a method of forming an integrated chip. The method is performed by forming gate structures and middle-end-of-the-line (MEOL) structures extending in a first direction over an active area of a substrate. The MEOL structures are interleaved between the gate structures along a second direction. The method further forms a power rail and a first metal wire extending in the second direction. The first metal wire is over the MEOL structures. A double patterning process is performed to form second and third metal wires extending in the first direction over the first metal wire and separated in the second direction. The second metal wire is cut according to a first cut region of a first cut mask to define a first metal strap connecting a first one of the MEOL structures to the power rail.
    Type: Grant
    Filed: February 19, 2018
    Date of Patent: January 1, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chih-Liang Chen, Chih-Ming Lai, Charles Chew-Yuen Young, Chi-Yeh Yu, Jiann-Tyng Tzeng, Kam-Tou Sio, Pin-Dai Sue, Ru-Gun Liu, Shih-Wei Peng, Wen-Hao Chen, Yung-Sung Yen, Chun-Kuang Chen
  • Patent number: 10162930
    Abstract: A method performed by at least one processor comprises the operations of obtaining information on gate pitch and a ratio m:n between gate pitch and metal line pitch, m, n being a natural number and the ratio being in the simplest form, determining a unit pattern having a width of n times of the gate pitch, assigning m consecutive metal lines to the unit pattern, dividing the width of the unit pattern by m and obtaining a quotient (Q) and a remainder (R), determining an integer P so that a value of the remainder R divided by P satisfies a layout precision, and determining an inter-pattern metal line pitch and an intra-pattern metal line pitch based on Q and R/P.
    Type: Grant
    Filed: August 5, 2016
    Date of Patent: December 25, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Wei-Cheng Lin, Kam-Tou Sio, Shih-Wei Peng, Hui-Ting Yang′, Chih-Liang Chen, Jiann-Tyng Tzeng, Chew-Yuen Young, Chia-Tien Wu, Chih-Ming Lai
  • Patent number: 10157922
    Abstract: A semiconductor device includes an active region comprising a source/drain region and a plurality of poly strips spaced apart and arranged along a first direction crossing over the active region. The first direction is substantially perpendicular to a lengthwise direction of the active region. A first metal pattern is disposed on the poly strips and arranged along the first direction. A plurality of first interconnect plugs is interposed in between the poly strips and the first metal pattern and in between the active region and the first metal pattern. A position of the first interconnect plugs being variable along the first direction.
    Type: Grant
    Filed: March 13, 2017
    Date of Patent: December 18, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Wei-Cheng Lin, Kam-Tou Sio, Jiann-Tyng Tzeng, Charles Chew-Yuen Young
  • Publication number: 20180358309
    Abstract: The present disclosure relates to a method of forming an integrated chip. The method may be performed by forming first and second source regions within a substrate. The first and second source regions are separated by a drain region along a first direction. First and second middle-end-of-the-line (MEOL) structures are formed over the substrate. The first and second MEOL structures have bottom surfaces that continually extend past edges of the first and second source regions, respectively, along a second direction perpendicular to the first direction. A power rail is formed that is electrically coupled to the first and second MEOL structures. The power rail has a first interconnect wire, a via rail on and in contact with the first interconnect wire, and a second interconnect wire on and in contact with the via rail. The via rail continuously extends along the first direction past the first and second MEOL structures.
    Type: Application
    Filed: August 21, 2018
    Publication date: December 13, 2018
    Inventors: Kam-Tou Sio, Chih-Ming Lai, Chun-Kuang Chen, Chih-Liang Chen, Charles Chew-Yuen Young, Chi-Yeh Yu, Jiann-Tyng Tzeng, Ru-Gun Liu, Wen-Hao Chen
  • Publication number: 20180308796
    Abstract: A semiconductor device or structure includes a first pattern metal layer disposed between a first supply metal tract and a second supply metal tract, the first pattern metal layer comprising an internal route and a power route. A follow pin couples the first supply metal to the power route. The second supply metal tract is wider than the first supply metal tract. The first supply metal tract has a thickness substantially same as the first pattern metal layer. The first supply metal tract comprises a first metal and a follow pin comprises a second metal.
    Type: Application
    Filed: August 31, 2017
    Publication date: October 25, 2018
    Inventors: Shih-Wei Peng, Chih-Liang Chen, Charles Chew-Yuen Young, Hui-Ting Yang, Jiann-Tyng Tzeng, Wei-Cheng Lin
  • Patent number: 10109582
    Abstract: Examples of an integrated circuit a having an advanced two-dimensional (2D) metal connection with metal cut and methods of fabricating the same are provided. An example method for fabricating a conductive interconnection layer of an integrated circuit may include: patterning a conductive connector portion on the conductive interconnection layer of the integrated circuit using extreme ultraviolet (EUV) lithography, wherein the conductive connector portion is patterned to extend across multiple semiconductor structures in a different layer of the integrated circuit; and cutting the conductive connector portion into a plurality of conductive connector sections, wherein the conductive connector portion is cut by removing conductive material from the metal connector portion at one or more locations between the semiconductor structures.
    Type: Grant
    Filed: March 10, 2017
    Date of Patent: October 23, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Chih-Liang Chen, Cheng-Chi Chuang, Chih-Ming Lai, Chia-Tien Wu, Charles Chew-Yuen Young, Hui-Ting Yang, Jiann-Tyng Tzeng, Kam-Tou Sio, Ru-Gun Liu, Shun Li Chen, Shih-Wei Peng, Tien-Lu Lin
  • Patent number: 10096522
    Abstract: The present disclosure relates to a method of forming an integrated chip having middle-of-the-line (MOL) structures arranged at an irregular pitch, and an associated method of formation. In some embodiments, the integrated chip has a well region with a plurality of source/drain regions. A plurality of gate structures are arranged over the well region at a regular pitch. A plurality of middle-of-the-line (MOL) structures are laterally interleaved between some of the plurality of gate structures and are arranged over the well region at an irregular pitch having a first pitch that is larger than the regular pitch. Since the MOL structures have an irregular pitch with a first pitch that is larger than the regular pitch, one or more of the plurality of gate structures are spaced apart from a closest gate or MOL structure by a space that reduces parasitic capacitance.
    Type: Grant
    Filed: May 6, 2016
    Date of Patent: October 9, 2018
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hui-Ting Yang, Chih-Ming Lai, Chun-Kuang Chen, Chih-Liang Chen, Charles Chew-Yuen Young, Jiann-Tyng Tzeng, Kam-Tou Sio, Meng-Hung Shen, Ru-Gun Liu, Wei-Cheng Lin